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In studying phase behavior of confined fluids, a lattice gas

model1 is widely used. It has been successfully applied to the

phase behavior of water trapped in a carbon nanotube.2 We

have used a similar model to study the capillary force due to

a water meniscus that forms between an AFM tip and a

surface.3,4 In the Monte Carlo simulation of a confined fluid,

it is often reasonable to fix the chemical potential μ (e.g. in

phase equilibria) instead of the number of molecules N. It is

then sensible to work with a grand-canonical (μVT) ensem-

ble.2-4 Figure 1 illustrates a grand-canonical Monte Carlo

simulation of a liquid confined between two surfaces. The

liquid sites, drawn as circles in the figure, mimic water

molecules3,4 at a relative humidity of 29%. The circular

upper surface is modeled after a nanoscale AFM tip, and the

flat lower surface corresponds to the surface probed by the

tip. As the inter-surface distance h increases by one lattice

spacing l [from A to B in Figure 1], the liquid profile

changes (usually, the meniscus narrows in its waist). The

force between two surfaces, F, is given by5

 (1)

, where Ω and V are the grand potential and volume of the

system, respectively, and p is the pressure of the bulk system

with a chemical potential μ. The key quantity in the Monte

Carlo calculation of equation (1) is the derivative of Ω with

respect to h (the bulk pressure p can be easily calculated by

using an analytic theory such as the density functional

theory3). Within a lattice model in general, the derivative is

given by the change in Ω as h increases by l. Therefore, in

order to calculate the force, one needs [Ω(h + l) − Ω(h)],

where Ω(h + l) and Ω(h) are the grand potentials at inter-

surface distances of h + l and h, respectively. 

Unfortunately, Ω is not a direct observable in a standard

Monte Carlo simulation. Previously, we used a thermo-

dynamic integration method that utilizes the following

relation,6 

,  (2)

where E and N are the energy and number of molecules,

respectively. In order to calculate Ω, we numerically

integrated equation (2) as follows. Starting from β = 0

(infinite T where Ω is known exactly), we ran simulations

for at least 10 intermediate β values. At each β value, we

evaluated the right-hand side of equation (2) by using a

standard Monte Carlo method. Obviously, running simu-

lations at intermediate temperatures is the computational

bottleneck in the force calculation. There is another thermo-

dynamic integration method that involves an integration

with respect to μ,3,4 but its computational load is nearly

identical to that required for the above integration with

respect to β. 

Here we propose a thermodynamic perturbation method to

calculate the change in the grand potential. Let us write the

difference in the grand potential as

Ω(h + l) − Ω(h) = −kBT ln[Z(h)/Z(h + l )]  (3)

, where Z(h) and Z(h + l) are the partition functions of the

systems with inter-surface distances of h and h + l,
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Figure 1. Profile of a liquid confined between two solid surfaces.
The upper- and lower- surface sites are drawn as open and filled
squares, respectively. The liquid sites (defined as the lattice sites
with an average occupancy above 1/2) are represented as filled
circles. These figures represent 2-dimensional cross sections of
water menisci condensed between an AFM tip and a flat surface
under an ambient condition. A lattice gas model2-4 has been used in
this simulation. The liquid profile changes when the distance
between two surfaces, h, increases from 3 [A] to 4 [B] lattice
spacings, ls. 
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respectively. The formal expression of Z(h) is 

Z(h) =  (4)

, where B is the total number of lattice sites, and ci (i = 1, 2,

…, B) is the occupation number (0 or 1) of the ith site. The

effective energy H in equation (4) is defined as

 (5)

, where we wrote the energy  and number

 as functions of the occupation number of

each site.  is typically given as a sum of

intermolecular and molecule-surface interactions both taken

to be of a nearest-neighbor type. Now suppose the total

number of lattice sites at an inter-surface distance of h + l is

B'(> B). Note

Z(h) = 2(B−B')

× . (6)

Using the above equation, we can write the ratio of partition

functions in equation (3) as 

×  (7)

, where , and

 means the ensemble average for a fixed

chemical potential μ, an inter-surface distance h + l, and

temperature T. Using equation (7), we can write equation (3)

as

Ω(h + l) − Ω(h) =

kBT . (8)

The above equation expresses the difference in the grand

potential as an ensemble average of exponentiated ΔH. 

In principle, equation (8) can be evaluated by running a

simulation at a single thermodynamic state. An accurate

evaluation of equation (8) however will require sampling a

range of ΔH much broader than obtained in a standard

Monte Carlo method. There are advanced Monte Carlo

techniques designed to meet such a requirement. Over-

lapping distribution method and umbrella sampling7 would

be examples. Another numerical difficulty arises when

typical ΔH values are large, causing a divergence in

. To make ΔH smaller in magnitude,

one could introduce an intermediate geometry as follows.

Let us consider the case where the inter-surface distance h

varies from 3l to 4l (as in Figure 1). One can think of this

transition in the geometry as a two-step process by inserting

an intermediate geometry shown in Figure 2. In this choice

of an intermediate geometry (one can think of various other

geometries different from Figure 2), the half of the upper

surface sites are identical to the upper surface sites at h = 3l

(Figure 1A), and the rest of the upper surface sites

corresponds to the upper surface sites at h = 4l (Figure 1B).

The transition from Figure 1A to Figure 1B can be divided

into the transitions from Figure 1A to Figure 2 and from

Figure 2 to Figure 1B. Equation (8) can be applied to each

step, and the net change in Ω is given by the sum of Ω
change in each step. In this way, one can vary the system

geometry gradually, and ΔH values in simulation will be

smaller. The decrease in the magnitude of ΔH will be helpful

in preventing the divergence of exponential function in

equation (8). This scheme, combined with the advanced

Monte Carlo techniques, is expected to be less time-consum-

ing than thermodynamic integration methods (which typical-

ly require 10 additional simulations for a given thermo-

dynamic state). In summary, equation (8) will provide an

efficient computational method compared to the previous

Monte Carlo methods using a thermodynamic integration. 
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Figure 2. An intermediate geometry of Figure 1A (h=3l) and
Figure 1B (h=4l). As in Figure 1, gray-filled squares represent the
lower surface sites. Open and black-filled squares correspond to the
tip-surface sites at h=4l and h=3l, respectively. The liquid profile
for this geometry (not shown) is expected to be in the middle of the
two profiles shown in Figure 1. 


