Density Functional Study on the Reductive Elimination at an (NCN)Pt(IV) Center

Sungu Hwang, ${ }^{\dagger,+, *}$ Han Young Woo, ${ }^{,+, \&}$ Hyun Cho, ${ }^{\#}$ and Joonkyung Jang ${ }^{\ddagger, \$}$
${ }^{\dagger}$ Department of Nanomedical Engineering, Pusan National University, Miryang 627-706, Korea. "E-mail: sungu@pusan.ac.kr ${ }^{\ddagger}$ BK21 Nano Fusion Technology Team, Pusan National University, Miryang 627-706, Korea
${ }^{\S}$ Department of Nanomaterials Engineering, Pusan National University, Miryang 627-706, Korea
*Department of Nanosystem and Nanoprocess Engineering, Pusan National University, Miryang 627-706, Korea Received November 26, 2007

Key Words : DFT, Reductive elimination, Pt(IV), Pincer ligand

The formation of C-C bond catalyzed by metal complex has been a subject of intensive studies. Recently competitive $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ and $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ carbon-carbon reductive elimination from a platinum(IV) center was reported. ${ }^{1}$ A platinum complex of tridentate "pincer" ligand of the form (NCN) (1) has been synthesized, and the addition of trifluoromethanesulfonic acid (HOTf) resulted in complexes from reductive elimination. (Scheme 1) The rate of $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ coupling forming 3 is comparable to that of $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ coupling leading to $\mathbf{4}$, which is not expected from the earlier works. ${ }^{2,3}$

Here we report density functional studies on the mechanism of those two reductive elimination reactions of the intermediate (2) formed from 1. The ethyl groups attached to N of $\mathbf{1}$ (and other chemical species) were replaced by methyl groups to reduce computational burden and extra complexity from conformational degree of freedom due to ethyl groups. Geometry optimization was carried out at the B3LYP/ LACVP** level of theory using Jaguar v5.5 suite. ${ }^{4}$ The stability of all the minima including intermediates and transition states (TSs) was evaluated by calculating the standard Gibbs free energy of each species at 233.15 K at which the experiments were performed. The standard Gibbs free energy of a molecule was evaluated by

$$
\begin{equation*}
\Delta \mathrm{G}=E_{0}+\mathrm{ZPE}+\Delta \Delta G_{0 \rightarrow 233} \tag{1}
\end{equation*}
$$

The total energy of the molecule at $0 \mathrm{~K}\left(E_{0}\right)$ is calculated at the optimum geometry from B3LYP/LACVP** level of theory. Zero-point energy (ZPE), and Gibbs free energy change from 0 K to $233.15 \mathrm{~K}\left(\Delta \Delta G_{0 \rightarrow 233}\right)$ were evaluated at the same level of theory. Thermodynamic quantities were evaluated according to rigid-rotor harmonic oscillator approximation using the computed harmonic frequencies. The local minima and TSs were identified by the analysis of harmonic frequencies from analytical Hessian calculation. Reaction paths were traced by the intrinsic reaction coordinate (IRC) method ${ }^{5,6}$ starting from the TSs to confirm that the reactants and products are correct. Poison-Boltzmann (PB) continuum model ${ }^{7,8}$ was used to describe the solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at the B3LYP/6-31G** level with solvent probe radius of $2.34 \AA$ and the solvent dielectric constant of 9.1. ${ }^{9}$ The solvation effects were calculated at gas phase geometries optimized with B3LYP/6-31G** level. We focused on the C-C reductive elimination step. Five-coordinate $\mathrm{Pt}(\mathrm{IV})$ cationic intermediate is conjectured to be the chemical species from
which the C-C reductive coupling occurs rather than from a six-coordinate $\mathrm{Pt}(\mathrm{IV})$ solvento species. ${ }^{10}$ Previous studies on reductive elimination reaction to form $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{X}$ bonds from $\mathrm{Pt}(\mathrm{IV})$ or $\mathrm{Pd}(\mathrm{IV})$ showed that five-coordinated intermediates are formed before the reductive coupling occurs. ${ }^{11}$

In Figure 1, showed is the Gibbs free energy diagram relative to intermediate $\mathbf{2}^{+}$(+ denotes the five-coordinated cationic species) and the optimized structures from B3LYP/ LACVP** calculations. For the comparison, the gas-phase thermodynamic quantities are also included.

Two conformers exist for $\mathbf{2}^{+}$, one is C_{2}-symmetric and the other is C_{s}-symmetric. The computation results showed that C_{2}-form is more stable than C_{s}-form, both in the gas phase (by $1.7 \mathrm{kcal} / \mathrm{mol}$) and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (by $1.3 \mathrm{kcal} / \mathrm{mol}$). The energy barrier for the conversion between two forms was calculated to be $3.7 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.1 \mathrm{kcal} / \mathrm{mol}$ in the gas phase). Pt- C_{ph} distance was calculated to be $2.02 \AA$ for both forms, and Pt-C C_{Me} distances were $2.15 \AA\left(C_{2}\right)$ and 2.13 and $2.17 \AA\left(C_{\mathrm{s}}\right)$.

Two conformers also exist for $\mathbf{3}^{+} . C_{2}$-form is more stable by $1.6 \mathrm{kcal} / \mathrm{mol}$ in the gas phase, and C_{s}-form is more stable by $4.2 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{\mathrm{Pt}-\mathrm{C}_{\mathrm{ph}} \text { distance was calculated to }}$ be $1.93 \AA$.

Only C_{s}-symmetric form can exist for $\mathbf{4}^{+}$, since phenyl ring is subject to a boat-type puckering and thus considerably tilted from the metal-ligand coordination plane, as found in other similar compounds. ${ }^{12,13}$ The complex can be regarded as a frozen intermediate toward $\mathrm{C}_{\mathrm{sp} 2}-\mathrm{C}_{\mathrm{sp} 3}$ bond activation. ${ }^{12,13}$ The steric repulsion between two methyl rings in the TS also contribute to the relative instability of the Cs form, if exists. $\mathrm{Pt}-\mathrm{C}_{\mathrm{ph}}$ distance is calculated to be 2.39 \AA, which is much longer than $2.18 \AA$ found in $\operatorname{PtI}\left(\mathrm{MeC}_{6} \mathrm{H}_{3}\right.$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}-\mathrm{O}, \mathrm{o}^{\prime}\right)\right]^{+} .{ }^{12}$

Unlike the previous calculation and speculations, ${ }^{2,3} \Delta G^{\dagger}$ for $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ coupling is similar to that for $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ coupling, which is consistent with the experimental data. ${ }^{1}$ (experimental rate of $7: 1$ at $-40^{\circ} \mathrm{C}$) Gibbs free energy of activation for $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ coupling was calculated to be $6.1 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.3 \mathrm{kcal} / \mathrm{mol}$ in the gas phase). It is much smaller than $23-28 \mathrm{kcal} / \mathrm{mol}$ for ethane reductive coupling from fac$\left[\left(\mathrm{L}_{2}\right) \mathrm{PtMe}_{3} \mathrm{X}\right]$ (where $\mathrm{X}=$ halide, $\mathrm{L}_{2}=$ a bidentate diphosphine or two monodentate phosphines). ${ }^{10,14}$ Earlier theoretical model calculation with GVB level estimated ~35

Scheme 1
$\mathrm{kcal} / \mathrm{mol}$ of activation. ${ }^{3}$ Low energy of activation indicates that the intermediate 2^{+}is rather unstable and is reflected by low temperature condition of the experiment. The activation barrier for $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ coupling was calculated to be located at $8.6 \mathrm{kcal} / \mathrm{mol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.3 \mathrm{kcal} / \mathrm{mol}$ in the gas phase) relative to the C_{2} form of the intermediate. Conversion to C_{s} form must be preceded for this coupling since it is not occur in C_{2} form due to the steric hindrance. This results was not expected in the previous works. It is anticipated that $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ and $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ couplings for $\mathrm{Pt}(\mathrm{IV})$ have lower activation energy since the increased s character of the sp^{2} hybrids makes the orbital less directional, ${ }^{3}$ even though the numeral data have not reported. As for $\mathrm{Pt}(\mathrm{II})$, the Gibbs free energies of activation were calculated to be $45.0,37.5$ and $26.2 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{sp}^{2}-\mathrm{sp}^{3}, \mathrm{sp}^{2}-\mathrm{sp}^{3}$, and $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ coupling for $\mathrm{PtCl}_{2} \mathrm{R}_{2}$, where $\mathrm{R}=\mathrm{Me}$ or $\mathrm{Ph} .{ }^{2}$
Considering the estimated accuracy of $\sim 3 \mathrm{kcal} / \mathrm{mol}$ for stable intermediates, $\sim 5 \mathrm{kcal} / \mathrm{mol}$ for transition states, and even larger uncertainty for solvation energy calculations associated with the current level of theory, ${ }^{15}$ the computational results are in good agreement with the experimental data.
Another point to be noticed is that the relative independence on the reaction media, which is related to the current model in which the five coordinated cationic intermediates

Figure 1. Relative Gibbs free energy diagram and the optimized structures of minima and transition states from B3LYP/LACVP** level of theory calculations (Values in parentheses are the gasphase data).

5

6

Scheme 2
are considered.
We performed additional DFT calculations on model complexes of $\mathbf{5}$ and $\mathbf{6}$ in order to compare the Gibbs free energy of activation for the reductive elimination for $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ coupling and the effect of the restraints due to pincer type ligand.

The activation barriers for $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ and $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ couplings in model complex 5 were calculated to be 15.0 and $7.4 \mathrm{kcal} /$ mol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14.7 and $7.4 \mathrm{kcal} / \mathrm{mol}$ in the gas phase). In model 6, the activation barriers were 12.7 and $7.0 \mathrm{kcal} / \mathrm{mol}$ both in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and in the gas phase. These results show that the main factor in determining the activation barrier is the steric hindrance between Ph group attached to Pt and Me groups attached to N , which affects optimal orbital overlap between sp^{2} and sp^{2} (or between sp^{2} and sp^{3}).

In summary, we performed DFT calculations on reductive elimination reaction from a $\operatorname{Pt}(\mathrm{IV})$ center. We located transition states and intermediates successfully, and the results were consistent with the existing experimental data.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (Grant No. 2005-070-C00065).

References

1. Madison, B. L.; Thyme, S. B.; Keene, S.; Williams, B. S. J. Am. Chem. Soc. 2007, 129, 9538.
2. Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Organometallics 2005, 24, 715.
3. Low, J. J.; Goddard III, W. A. J. Am. Chem. Soc. 1986, 108, 6115.
4. Jaguar v5.5; Schrodinger Inc.: Portland, Oregon, 2003.
5. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
6. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
7. Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775.
8. Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M. N.; Goddard III, W. A.; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875.
9. Benitez, D.; Goddard III, W. A. J. Am. Chem. Soc. 2005, 127, 12218.
10. Procelewska, J.; Zhal, A.; Liehr, G.; van Eldik, R.; Smythe, N. A.; Williams, B. S.; Goldberg, K. I. Inorg. Chem. 2005, 44, 7732.
11. Pawlikowski, A. V.; Getty, A. D.; Goldberg, K. I. J. Am. Chem. Soc. 2007, 129, 10382.
12. Grove, D. M.; van Koten, G.; Louwen, J. N.; Noltes, J. G.; Spek, A. L.; Ubbels, H. J. C. J. Am. Chem. Soc. 1982, 104, 6609.
13. Albrecht, M.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 2001, 123, 7233.
14. Brown, M. P.; Puddephat, R. J.; Upton, C. E. E. J. Chem. Soc. Dalton Trans. 1974, 2457.
15. Keith, J. M.; Goddard III, W. A.; Oxgaard, J. J. Am. Chem. Soc. 2007, 129, 10361.
