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We report that an external field can drive inherently extensive systems into nonextensive ones. For the correct
grand canonical description of nonextensive systems, it is necessary to take into account the excess grand
potential, X, in addition to the conventional grand potential proportional to the thermodynamic pressure,
which has long been overlooked in the literature in this field. We present the statistical mechanical expression
for X of a system as a functional of the external field imposed on the system, from which we establish the
criterion for the external field that drives an inherently extensive macroscopic system into a nonextensive
one.

The grand canonical ensemble (GCE) is one of the most
fundamental ensembles for statistical mechanical description of
an open system in which both the energy and the number of
particles fluctuate.1,2 Since GCE was firmly established by
Tolman,3 it has been exploited to solve a variety of problems
encountered in physics and chemistry.4-9

The conventional formula that connects the grand canonical
ensemble to thermodynamics, originally due to Fowler,10,11 is
given by

PG ) kT
1
V

ln �(µ, V, T) (1)

where PG, T, V, and µ denote the conventional grand canonical
pressure, the temperature, the volume, and the chemical potential
of the system, respectively.5,7,12-17 k denotes the Boltzmann
constant. A long time ago, Yang pointed out that the conven-
tional grand canonical pressure PG in eq 1 is not the grand
canonical average 〈P〉 of the canonical pressure

〈P〉 ) kT
∂

∂V
ln �(µ, V, T) (2)

but PG is the second average of 〈P〉 over all volumes from zero
to the actual volume of the system.18,19 However, later, Lewis
showed that conventional grand canonical pressure, PG, becomes
identical to 〈P〉 given in eq 2 in the limit of infinite systems,
whenever PG exists.20 Presented in ref 20 is a direct proof for
the equivalence between PG in eq 1 and 〈P〉 in eq 2 for an
extensive macroscopic system. On the other hand, it is estab-
lished that, in the macroscopic limit, the effects of fluctuation
in particle number become negligible so that 〈P〉 defined in eq
2 becomes identical to the canonical pressure, 〈P〉c,

〈P〉c ) kT
∂

∂V
ln Q(N, V, T) (3)

where Q(N,V,T) is the canonical partition function of the system
of N particles in volume V in equilibrium with a heat bath with
temperature T.

However, it is not necessarily well-known that an external
field can make an inherently extensive system nonextensive so
that eq 1 may not hold for the system under an external field
unlike the thermodynamic connection formulas for other popular
statistical ensembles such as microcanonical ensemble and
canonical ensemble. Percus, Pozhar, and Gubbins once noted
that an intuitive generalization of eq 1 does not provide the
correct hydrodynamic description of strongly inhomogeneous
fluids;21 however, the external field driven nonextensivity and
its contribution to grand potential have never been yet recog-
nized to the best of our knowledge. In this Letter, we introduce
the notion of external field driven nonextensivity, and quantify
the previously neglected contribution of the nonextensivity to
the grand potential on the bases of simple and exact analyses.
In addition, we present the quantitative criterion for the external
field that drives an inherently extensive macroscopic system into
a nonextensive one. We also note that, even in descriptions of
homogeneous systems, eq 1 has been used out of its application
range in literatures.7,13-17,22 For example, an ideal homogeneous
Bose-Einstein gas system is a nonextensive system as long as
it is finite and does not obey eq 1, which has long been
overlooked in textbooks in this field.13-17 To such nonextensive
systems, whether or not induced by an external field, care must
be taken in applying such thermodynamic equations as the
Gibbs-Duhem equation and the compressibility equation,23,24

which are correct only for extensive systems.
In the beginning of this Letter, we present exact model

analyses to demonstrate that the grand canonical pressure PG

defined in eq 1 can be much different from the canonical
pressure 〈P〉c in eq 3 for a system under external potential even
in the macroscopic limit.25 We will then show that the
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discrepancy between PG defined in eq 1 and 〈P〉c in eq 3 occurs
because an external field drives an inherently extensive system
into a nonextensive one to which eq 1 is inapplicable. For the
correct grand canonical description of a nonextensive system,
it is necessary to introduce the excess grand potential X defined
by G - µN with G and µ being the Gibbs free energy and the
chemical potential, in addition to the conventional grand
potential given by -PV. We obtain a simple statistical mechan-
ical expression for X as a functional of external field, from which
we establish the criterion for the external potential that can
generate the nonextensivity on macroscopic systems. We note
here that Lewis’s mathematical proof in ref 20 may be free of
error, but it is proved for an extensive system whose canonical
partition function Q satisfies the following properties:
limNf∞ N-1 ln Q(N,V,T) exists and is a function of density N/V
and temperature T only,26 which may not always be the case
for a system under an external field.

Let us first consider a system of N mutually noninteracting
gas particles confined in a volume V under an external potential,
Uext(r). The canonical partition function Qgas(N,V,T) of the
system is given by Qgas(N,V,T) ) q(V,T)N/N!, where q(V,T)
denotes the molecular partition function defined by q(V,T) )
[1/Λ(T)3]∫V dr exp[-�Uext(r)], with Λ(T) and � being the
thermal de Broglie wavelength of the gas particle and (kT)-1,
respectively. The corresponding grand canonical system is the
gas system in the same volume V but with a permeable boundary
in which the chemical potential µ is fixed so that the number
of gas particles fluctuates around the average value Nj given by
N. For the latter grand canonical system, eq 1 yields the equation
of state of an ideal gas:

PG ) �-1Nj /V ≡ Pid (4)

where Nj is given by Nj ) exp(�µ)q(V,�). Note that eq 4 results
from eq 1 for the mutually noninteracting gas system irrespective
of the functional form of the external field, Uext(r) imposed on
the system.

In comparison, the canonical pressure 〈P〉c defined in eq 3
can deviate from the ideal gas law or eq 4, depending on the
external potential imposed on the gas system. For example,
consider the gas system under external potential Ug defined by
Ug(r) f ∞ for |r| < σ and Ug(r) ) -C/|r| for |r| > σ, with C
and σ being positive constants. From eq 3, the canonical pressure
〈P〉c

(g) of this system on the surface defined by |r| ) R(>σ) can
be obtained as

〈P〉c
(g) ) Pid

(R'3 - σ′3) exp(1/R')
ψ(R') - ψ(σ′) (5)

where R′, σ′, and ψ are respectively defined by R′ ) R/�C, σ′
) σ/�C, and ψ(x) ) 2-1[e1/xx(1 + x + 2x2) - Ei(1/x)], with Ei
denoting the exponential integral function.

Although 〈P〉c
(g) given in eq 5 deviates significantly from PG,

the discrepancy between 〈P〉c
(g) and PG becomes smaller as R′

increases; as the value of R′ increases, 〈P〉c
(g) approaches Pid as

follows:

〈P〉c
(g) ) Pid{1 - (2R')-1 - (2R')-2 +

O(R'-3)} (R . �C) (6)

That is to say, in the macroscopic limit, the canonical pressure
〈P〉c

(g) calculated by eq 3 for this model is identical to the grand
canonical pressure PG predicted by eq 1.

However, the equivalence between eqs 1 and 3 in the
macroscopic limit is not universal. For example, the prediction,
〈P〉c

(h), of eq 3 for the pressure at the surface defined by |r| ) R

for the gas system under the isotropic harmonic potential,
Uh(r)(≡2-1κ|r|2), with κ being the force constant, is given by

〈P〉c
(h) ) Pid

�3

φ(�)
(7)

Here, � and φ(�) are given by � ) (�κ/2)1/2R and φ(�) ) (3/
4)[�π exp(�2) Erf(�) - 2�], respectively. 〈P〉c

(h) given in eq 7
does not reduce to Pid in the macroscopic limit; instead, it obeys
the following nonideal asymptotic behavior:

〈P〉c
(h) = Pid

4

3√π
(��κ

2
R)3

exp(-�κ

2
R2), (R . √�κ/2)

(8)

Note that, in this case, the discrepancy between 〈P〉c
(h) and PG

increases with R. In other words, even in the macroscopic limit,
the canonical pressure defined in eq 3 is not identical to the
grand canonical pressure PG defined in eq 1 for the gas system
under the isotropic harmonic potential. Physically, the pressure
of the gas system under the isotropic harmonic potential, Uh, is
expected to be smaller than that of the ideal gas system without
any external field. The physical intuition is consistent with the
expression for the canonical pressure 〈P〉c

(h) in eq 8 but not with
that of the conventional grand canonical pressure PG in eq 4.
This example shows that, in the presence of external potential,
the conventional thermodynamic connection formula, eq 1, of
the grand canonical ensemble may not be always correct.

The discrepancy between the conventional grand canonical
pressure PG in eq 1 and the averaged mechanical pressure given
in eq 2 or eq 3 can emerge for a nonextensive system only.
Since the grand potential Ω, defined by F - µN with F being
the Helmholtz free energy, is related to the grand canonical
partition function as Ω ) -kT ln �,12-17 eq 1 is obviously
correct for an extensive system of which Gibbs free energy,
G(≡F + PV), can be written as

G ) µN (9)

Note that, throughout this work, µ denotes the chemical potential
with the following standard definition, i.e., µ ≡ (∂U/∂N)S,V )
(∂F/∂N)T,V ) (∂G/∂N)T,P,27 not generalized chemical potentials
with different definitions.28,29 One can easily show that eq 9
holds if the canonical partition function Q satisfies the property
assumed by Lewis:20 limNf∞ N-1 ln Q(N,V,T) is a function of
N/V and T only.26 Note that the latter condition for the canonical
partition function is satisfied if and only if the Helmholtz free
energy F satisfies limNf∞ F(λN,λV,T)/(λN) ) limNf∞ F(N,V,T)/N
for arbitrary λ, or

F(λN, λV, T) ) λF(N, V, T) (10)

in the macroscopic limit. Equation 9, on which eq 1 is based,
can be derived from eq 10 by application of Euler’s theorem,30

i.e., by taking the partial derivative on both sides of eq 10 with
respect to λ and setting the value of λ equal to 1. This simple
proof shows that eq 1 holds under the above-mentioned
assumption for the canonical partition function, in accordance
with Lewis’s more direct proof.20 Equation 1 holds also for a
finite system as long as the system is an extensive system for
which eq 9 or 10 holds. As shown here, however, application
of eq 1 to a nonextensive system, which has become routine in
the literature,7,13-17,22 is not justifiable regardless of whether the
system is under an external field or not.

To quantify the nonextensivity of a system, we introduce the
excess grand potential X with the following definition: X ≡ G
- µN. The grand canonical expression for X is given by
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X ) kTV[∂(V-1 ln �(µ, V, T))
∂ ln V ]µ,T

(11)

which can be readily obtained by substituting eq 2 into the
definition of grand potential

Ω ≡ X - PV ) -kT ln � (12)

Equations 11 and 12 indicate that eq 1 does not hold unless
V-1 ln � is constant in V and the excess grand potential X
resulting from the nonextensivity vanishes. In Figure 1, we plot
the relative contribution of the excess grand potential X to the
total grand potential Ω for the classical gas system under the
external potentials considered above. Note that X/Ω vanishes
for the gas system under external potential Ug in the macroscopic
limit but not for the gas system under harmonic external
potential Uh.

Let us now establish the criterion for the external field that
drives the inherently extensive gas system into a nonextensive
one. For the classical gas system, eq 11 reduces to

Xext ) kTNj(∂ ln �ext(V)

∂ ln V )
T

(13)

where Nj denotes the average number given by e�µ�ext(V)V/Λ3,
with �ext(V) ≡ V-1∫V dr exp[-�Uext(r)]. Equation 13 tells us
that the nonextensivity of the mutually noninteracting gas system
can be induced by external potential Uext whenever �ext(V) is
not a finite constant in V. Furthermore, eqs 4, 12, and 13 tell us
that, for the mutually noninteracting gas system under external
potential Uext, eq 1 is incorrect even in the macroscopic limit
unless γ∞[≡limVf∞((∂ ln �ext(V))/(∂ ln V))T] of the external po-
tential Uext vanishes. Note that γ∞ is zero for the gas system
under external potential Ug, for which eq 1 is correct in the
macroscopic limit, but is -1 for the system under Uh, for which
eq 1 does not hold.

Note that eqs 11 and 12 are correct in quantum statistics as
well. As such, eq 1, valid for an extensive system only, should
not be applied to a finite ideal Bose-Einstein (BE) gas system,
since the latter system is an inherently nonextensive system
whose excess grand potential X is given by kT ln[1 - exp (�µ)].
The latter excess grand potential has long been misinterpreted

as the ground-state contribution to PV for a finite ideal
Bose-Einstein gas system due to the inappropriate application
of eq 1.13-17

The canonical expression for X is given by

X ) kT[-ln Q + (∂ ln Q
∂ ln V )N,�

+ (∂ ln Q
∂ ln N )V,�] (14)

One can show that the grand canonical expression for X in eq
12 becomes identical to eq 14 for a macroscopic open system
in which the fluctuation in particle number around the mean is
negligible. For the mutually noninteracting gas system, eq 14
reduces to eq 13 with Nj replaced by the constant particle
number, N, in the canonical ensemble. For a fluid system
composed of N indistinguishable particles under an arbitrary
potential, U(r1, r2, ... , rN), the canonical partition function Q
can be written as Q ) (1/N!)[V�N(V)/Λ3]N, where �N(V) is given
by �N(V) ) V-1{ZN(V,T)}1/N, with ZN(V,T) being the configu-
rational integral defined by ∫V dr1 ∫V dr2 ... ∫V drN

exp[-�U(r1, r2, ... , rN)]. For the fluid system, eq 14 becomes

X ) N�-1[(∂ ln �N(V)

∂ ln V )
N,�

+ (∂ ln �N(V)

∂ ln N )
V,�] (15)

One can show that the excess grand potential X in eq 15 is
identically zero when �N(V) is a function of density, N/V, and
temperature, T, only. For example, X vanishes for van der Waals
fluid, for which �N(V) is given by �N

VDW(V) ) (1 - Nb/
V) exp(�aN/V) in the absence of any external potential. When
there is only external potential Uext but not any mutual
interaction between particles, i.e., when U(r1, r2, ... , rN) )
∑j)1

N Uext(rj), �N(V) reduces to �ext(V) so that eq 15 correctly
reduces to the canonical equivalent of eq 13. In the general case
where U(r1, r2, ... , rN) is the sum of the interparticle potential
Uint(r1, r2, ... , rN) and the external potential, ∑j)1

N Uext(rj), �N(V)
can be approximated as �N(V) = �N°(V)�̃ext(V) for a macroscopic
system, where �N°(V) denotes �N(V) of the system in the absence
of the external potential and �̃ext(V) is given by �̃ext(V) )
exp[limNf∞ N-1 ln〈∏i)1

N exp[-�Uext(ri)]〉°, with 〈f(rN)〉° being
the average of f over the equilibrium distribution of the system
in the absence of any external potential. For the inherently
extensive macroscopic system of which �N°(V) is a function of
density and temperature only, X given in eq 15 again reduces
to eq 13, but with Nj and �ext(V) being replaced by N and �̃ext(V),
respectively. In other words, the external potential can induce
nonextensivity to the inherently extensive interacting fluid
system as well unless �̃ext(V) is a finite constant in V. To such
nonextensive systems, whether or not the nonextensivity is
induced by an external field, care must be taken in applying
such thermodynamic equations as the Gibbs-Duhem equation
and the compressibility equation,23,24 which are correct only for
extensive systems for which X or G - µN is identically zero.

In the present Letter, we report that an external field makes
an inherently extensive system nonextensive and that it is
necessary to take into account the excess grand potential X (≡G
- µN), in addition to the conventional grand potential -PV,
for correct grand canonical description of a nonextensive system,
which has been overlooked in the literature in this field. We
have presented the statistical mechanical relationship between
X and an external potential. From the result, we have established
the criterion for the external field capable of inducing nonex-
tensivity on extensive macroscopic systems.

Acknowledgment. This work is supported by Chung-Ang
University Research Grant in 2008.

Figure 1. Contribution of the excess grand potential X resulting from
external field driven nonextensivity to the grand potential Ω for a
classical perfect gas system (a) under potential Ug defined by Ug(r) f
∞ for |r| < σ and Ug(r) ) -C/|r| for |r| > σ, with C and σ being positive
constants, and (b) under isotropic harmonic potential Uh, defined by
Uh ) 2-1κ|r|2. C′ and κ′ are unitless variables defined by C′ ) �C/σ
and κ′ ) 2-1�κR0

2, with R0 being an arbitrary unit of length. X/Ω is
equal to 1 - 〈P〉/PG, where PG is the conventional grand canonical
pressure defined in eq 1 and 〈P〉 is the ensemble average of the
mechanical pressure given in eq 2 or, equivalently, eq 3.
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Supporting Information Available: We present a detailed
proof of the equivalence between the mean mechanical pressure
at a surface of a system and the thermodynamic pressure given
in eq 2 of the system in the presence of an inhomogeneous
external field, according to an anonymous reviewer’s request.
This material is available free of charge via the Internet at http://
pubs.acs.org.
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