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Based on the findings of molecular dynamics simulations, we propose a novel diffusion model for the self-
assembly in dip-pen nanolithography. A central question in such modeling is how a nascent droplet created
below an AFM tip spreads out to form a self-assembled monolayer (SAM) on a substrate later. In the present
model, a molecule dropping from the tip pushes a molecule on the substrate out of its original position, and
the molecule pushed out in turn pushes its own neighbor. A SAM grows through such a series of push-
induced movements. The initial pushing propagates all the way to the periphery where there is no molecule
to push out. By contrast, according to the previous hopping-down model, a molecule moves by stepping over
molecules trapped on the substrate and occasionally hops down to the substrate. By implementing our model
in random walk simulations, we study the structure and growth dynamics of the SAM generated by a fixed
tip and the lines and characters created by a moving tip. We investigate how the SAM is influenced by the
molecular dripping rate and tip scan speed. Compared to the hopping model, the present model gives a SAM
growing faster and more fluctuating in its periphery. A salient feature of our model is its ability to generate
various SAMs by changing the directional coherence length of the push-induced displacement. If we choose
the coherence length to be zero, each push-induced displacement is random in direction to give a compact
circular SAM. As the directional coherence length increases, the SAM becomes a noncircular pattern with
distinct branches. In the limit of an infinite coherence length, the SAM becomes a long narrow cross due to
the substrate anisotropy.

I. Introduction

Tip-based dip-pen nanolithography (DPN) is a powerful
method to construct two-dimensional nanostructures on various
substrates.1-3 Using a sharp AFM tip coated with molecules,
DPN transfers molecules from the tip to a substrate, making a
self-assembled monolayer (SAM) with a nanometer resolution.
DPN succeeded in patterning various molecular types (organic
molecules, polymers, DNA, proteins, peptides, and nanopar-
ticles) on metallic, insulating, and semiconducting substrates.
Numerous technological innovations of DPN have been made
since its invention. For example, a microfluidic channel has been
integrated into the AFM cantilevers (so-called nanofountain
pen)4,5 to facilitate the continuous supply of molecules. Recently
DPN has been equipped with massively parallel, high-
throughput, and large-area capabilities by putting together tens
of thousands of tips into a two-dimensional array.1

In spite of the widespread and successful applications in
biochips, nanomaterials, and semiconductor industry, our fun-
damental understanding of DPN is still poor. We do not know
exactly how DPN is influenced by intrinsic molecular properties
(e.g., diffusivity) and by external conditions such as the tip scan
speed, temperature, and humidity. Theoretical investigation has
proven invaluable in this fundamental aspect of DPN.6-20 In
principle, a fully molecular simulation of DPN is desirable, but
it seems difficult at the current stage. First, experimental details
of DPN necessary for simulation are largely unknown. We do
not know the exact geometry of the tip and substrate. It is
therefore difficult to set up unambiguously the initial condition
(geometry and molecular positions) for molecular dynamics

simulation. Even if such experimental details are known, DPN
is quite a complicated process to simulate. Molecules initially
coated on the tip have to detach themselves from the tip (solid
melting), then drop down to the substrate (possibly through a
water meniscus formed between the tip and substrate), and
finally self-assemble on the substrate to form a SAM. Moreover,
the tip must move on the substrate to create various patterns,
and the typical size of a SAM is several hundred nanometers.
All these seem challenging for a molecular simulation.

Instead of describing the molecular details of DPN, we seek
a simplified model which captures the key features of DPN. If
such a model can reproduce experimental results, it will serve
as an invaluable tool for the structure prediction of DPN. One
can perform computer simulations by using the model, perhaps
to check the dependency on experimental conditions such as
molecular diffusivity and tip scan speed. Such simulations will
serve as useful feedback to experiment in an effort to achieve
an optimal control of DPN. In our thoughts, a successful model
of DPN must take into account the following two aspects: the
molecular flow from the tip and the self-assembly on the
substrate. In doing so, the model should incorporate the
properties of molecule and substrate such as molecular transport
property and molecule-substrate binding strength. Several
phenomenological models have been proposed so far.8,13,14,19,20

Unfortunately, they focused on the water meniscus formed
between the tip and substrate14,19,20 or did not consider the case
of a moving tip.8,13

Based on a set of simplifying assumptions, we have proposed
a hopping down model for DPN (Figure 1a) that can be applied
to the case of a moving tip.6 Due to the molecular flow from
the tip, the substrate area below the tip is congested with
molecules (unlike the area far from the tip). The consequent
concentration gradient drives the molecular diffusion away from
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the tip toward the unoccupied area of the substrate. Central to
the model is the mechanism of how a nascent droplet spreads
out to form a SAM afterward. If we assume an extremely strong
molecule-substrate binding, molecules become trapped once
they touch the bare substrate, forming a monolayer at the bottom
(drawn as gray circles at the bottom in Figure 1a). Molecules
deposited earlier in time soon cover up the area under the tip.
Molecules dropped later, since the area near the tip is preoc-
cupied, step over molecules below and occasionally hop down
to the bare substrate (once they reach the SAM periphery). This
hopping model should be valid in the limit where the molecule
makes an irreversible, extremely strong (usually chemical)
binding to the substrate.

Recently,weperformedmoleculardynamics(MD)simulations9,10

for an alkanethiol on gold (111) substrate, a prototypical system
for DPN. Instead of the irreversible trapping of molecules as in
the hopping model, molecules rearrange on the substrate through
a serial pushing mechanism (Figure 1b). More specifically, a
molecule in the upper layer (open circle in the second layer in
the figure) pushes a molecule on the substrate out of its original
position, and the molecule pushed out in turn pushes out another
molecule nearby. The underlying reason is that, although thiol
molecules strongly stick to the gold, they can move rather easily
from one of hollow sites of Au (111) to another. Their vertical
movements on the substrate are severely restricted, but their
lateral movements are relatively facile (like a magnet on a
magnetic board). If such a successive push propagates and hits
the periphery, the pushing finally stops and the SAM grows in
size. The serial pushing prevails for a SAM with a diameter up
to 40 nm. For such a large monolayer, the serial pushing
involves a concerted displacement of many molecules to reach
the periphery. Herein, adopting the above pushing mechanism,

we develop a novel diffusion model and implement it in random
walk simulations. We inspect SAMs created by using various
molecular dripping rates, ns, and scan speeds, Vs, of the tip.
For a tip fixed or moving on the substrate, we examine the
growth dynamics and the shape of the SAM. We discuss
qualitative and quantitative difference between SAMs obtained
from the pushing and the hopping models. We show that, by
changing the degree of directional coherence in the push-induced
displacement, the present model can generate various structures
ranging from a compact dot to a noncircular pattern with distinct
branches.

II. Details of Model and Simulation

We describe how we model the molecule-substrate interac-
tion. A molecule on the bare substrate is not allowed to move
spontaneously but is displaced by push from its neighbor
molecule (vertically above or laterally beside the molecule). We
found that the spontaneous molecular movement on the bare
substrate is insignificant in the MD simulation of alkanethiol
on gold. If we allow the spontaneous molecular diffusion on
the substrate, the resulting SAM will eventually diffuse away.
Such a problem of no permanent SAM might be fixed by
introducing intermolecular attraction to our model. In doing so,
we are likely to add another parameter to our model. Instead of
an elaborate model requiring more parameters, we here develop
a simplistic model which, with a minimal number of parameters,
can capture the essential features of DPN.

Our random walk simulation is conducted with a discrete time
step dt on a cubic grid with spacing l. In all the results presented
here, length and time are in units of l and dt, respectively. At
every time step of simulation, each molecule sequentially
executes a random walk (as opposed to the case where all the
molecules move simultaneously). We randomly choose the order
of sequence in which each molecule moves. Each molecule
jumps from its current position (x, y, z) to one of its five nearest
neighbors, (x ( 1, y, z), (x, y ( 1, z), and (x, y, z - 1), with
equal probability (20%). We leave out the upward jump to (x,
y, z + 1) because molecules, designed to bind to the substrate,
should feel downward attraction from the substrate.

We explain how to implement the serial pushing mechanism
in simulation. A random jump of a molecule described above
is likely to cause an overlap of the jumper with one of its nearest
neighbor molecules. When this overlap happens, the neighbor
molecule gives up its position and becomes the next jumper to
jump to one of its own nearest neighbor positions. If another
molecule preoccupies the position to which the second jumper
moves, a new push-induced movement follows. Note the
pushing can occur in the downward direction as well as in the
lateral direction. It also takes place both in one of the upper
layers and in the bottom layer (see Figure 1). If the push from
the upper layer propagates downward and hits a molecule on
the substrate, the push changes its direction toward one of four
lateral directions on the substrate. In other words, if a molecule
on the substrate is pushed down by a molecule above, it laterally
jumps to one of its four nearest neighbor positions. On the other
hand, if a molecule on the substrate is pushed laterally by its
neighbor, its push-induced jump can take only three directions
because the direction toward the position of pushing molecule
should be excluded. This pushing propagates toward the
periphery of SAM, and it continues until there is no more
overlap of the last jumper molecule with one of its nearest
neighbor molecules. We take the above push-induced move-
ments to occur without time delay. This is reasonable because
each push arises from a momentum transfer between colliding

Figure 1. Two models of the self-assembly in dip-pen nanolithography.
When an AFM tip is put into contact with a substrate, molecules (dotted
circles) start to drop from the tip to the substrate, forming a multilayered
droplet. (a) Hopping down model. A molecule on top (open circle)
steps over the immobile molecules touching the substrate (gray circles
at the bottom). Once a molecule reaches the edge of the monolayer of
immobile molecules, it hops down to the bare substrate and gets trapped.
(b) Serial pushing model. A molecule on top of the bottom layer (open
circle in the second layer) pushes its way down to the bare substrate.
To do so, molecules at the bottom have to move toward the periphery
to make a room for the pushing down molecule. In the figure, four
molecules (drawn as open circles in the bottom layer) move collectively
toward the periphery.
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molecules and therefore should occur much faster than diffusion
(note dt is a time scale within which the velocity relaxation of
the molecule is complete).

An important question in our model is in what direction a
molecule should move if pushed by another molecule (except
that it cannot move toward the position of the molecule pushing
it). Given that the pushing arises from a collision of two
molecules, it can be directed toward any direction in the
continuous space. We also found in MD simulations that a
molecule (alkanethiol) pushed out takes a random direction in
its lateral movement on the substrate (gold).9,10 To emulate this
uniformity in direction, each direction of a push-induced jump
is taken to be equally probable. Specifically, if pushed down
from above, a molecule located at (x, y, 1) on the substrate (z
) 0) jumps to one of its four nearest neighbor positions on the
substrate, (x ( 1, y, 1) and (x, y ( 1, 1), with equal probability
(25%). If a molecule on the substrate is pushed laterally, it
laterally jumps with equal probability (33.3%) toward one of
its nearest neighbor positions except the position of the pusher
molecule (only three directions are possible). If a molecule in
the upper layer (z > 0) is pushed down from above, it jumps
with 20% chance to one of its five nearest neighbor positions.
If a molecule in the upper layer is pushed laterally, it jumps
with 25% probability to one of its nearest neighbor positions
excluding the position of pushing molecule (only four directions
allowed).

We can make the above push-induced movement directionally
more coherent by using a finite directional coherence length,
Nd. This length is defined as the number of push-induced
movements with the same direction: if a molecule initially
pushes out its neighbor molecule, the following (Nd - 1)
consecutive movements take the same direction as the initial
pushing direction (except the automatic vertical to lateral
direction change when a molecule on the substrate is pushed
down from above). Then the direction of the (Nd + 1)th
molecular displacement becomes random, and the subsequent
(Nd - 1) movements take the same direction as the (Nd + 1)th
displacement. This coherent pushing goes on like this until the
last pushing hits the SAM periphery and stops. Our default
scheme (random direction for every jump) corresponds to the
case of Nd ) 0. In the opposite limit of Nd ) ∞, the pushing
direction remains identical all the way from its start to end.
We additionally considered finite coherence lengths, Nd ) 5
and 10, which lie between the two limits of Nd. It is shown
later that, depending on Nd, the SAM drastically varies in shape,
ranging from a compact dot to a highly branched SAM.

The AFM tip produces a constant flux of molecules called
dripping rate, n. The constancy of dripping rate has been
reported in many experiments.11,13,14,16 In simulation, we are
concerned with the relative value of dripping rate with respect
to the diffusion time scale, n* ) n/dt (n* is the number of
molecules dropped per time step). The case of n* < 1 is called
a slowly dripping tip, and one molecule is dropped for every
1/n* time steps (n* is chosen to give an integer value of 1/n*).
The area of molecular dropping is limited within a square of
nine grid points. The precise lateral position to drop a molecule
is chosen at random out of nine grid points. After fixing the
lateral position, we add a molecule on top of the molecule with
the highest vertical position at that lateral position. In the case
that there is no molecule at the lateral position, the dropping
molecule is placed on top of the substrate. For n* ) 1, we drop
one molecule at each time step by using the same procedure as
for n* < 1. In the case of a fast dripping tip (n* > 1), n*
molecules are dropped from the tip at every time step. As above,

the lateral positions of n* molecules lie within a square of nine
grid points. If n* exceeds 9, we put the extra (n* - 9) molecules
on top of the square and their lateral positions are chosen
randomly out of nine grid points of the square. Each dropping
molecule is placed on top of the molecule with the highest
vertical position at its lateral position or directly on the substrate
(in the case that there is no molecule preoccupying the lateral
position). We chose the above particular area of molecular
dropping (nine grid points) to emulate a point source of
molecules. With this simple choice, we focus on the self-
assembly process of DPN. The previous hopping down model
and the analytic diffusion theory both have been formulated by
treating the tip as a point source. As long as the dropping area
is small, the outcome of self-assembly will not depend much
on the number of grid points for the dropping area. In real
experiments, the area of molecular dropping will change from
tip to tip and from time to time on a microscopic time scale.
Unfortunately, not much is known about the tip geometry and
the area of molecular dropping in DPN. We are currently
working on a better modeling of the molecular dropping events
by investigating the dropping events in molecular dynamics
simulations.

In the case of a tip moving with a speed of V, the relative
velocity, V* ) V/(l/dt), matters in simulation. For a tip moving
slowly, V* < 1, the tip is displaced by one grid point for every
1/V* time steps (1/V* is chosen to be an integer). If V* g 1, the
tip moves V* grid points per time step. If the lateral position of
a dropping molecule does not exactly coincide with one of the
grid points on the substrate (e.g., when the tip moves diagonally
or its scan speed is not commensurate with the grid), the lateral
position of molecule is taken to be its nearest grid point. We
constantly check in simulation whether each grid point of the
substrate is stacked with molecules continuously from bottom
up as in the solid-on-solid model for crystal growth.21 If a grid
point of the substrate is not properly stacked with molecules,
we adjust the vertical positions of molecules located above that
grid point. For example, suppose a grid point of the substrate,
(x, y, 0), is initially stacked with molecules having vertical
positions 1, 2, and 3: (x, y, 1), (x, y, 2), and (x, y, 3). Let us
assume the middle molecule at (x, y, 2) jumps to another lateral
position so that we are left with molecules located at (x, y, 1)
and (x, y, 3). Then the vertical position of the top molecule (x,
y, 3) is adjusted to (x, y, 2).

For comparison, we completed random walk simulations
using the hopping down model. In brief, as soon as a molecule
arrives at an unoccupied grid point on the substrate, it becomes
immobile. A random walk is allowed only on top of the
monolayer consisting of immobile molecules touching the bare
substrate. If a molecule jumps to a position preoccupied by
another molecule, that jump is rejected. This is in accord with
the conventional excluded volume effect in random walk
simulation. One can imagine that, compared to the pushing
model, the molecular movement is suppressed. See ref 6 for
further details.

The present work investigates the structure and growth
dynamics of SAM by systematically varying the dripping rate
and scan velocity of the tip, sampling the parameter space of
our model. To compare with a specific experiment, we need to
specify the grid spacing l and time step dt in physical units.
Note l is the distance of closest approach of two molecules in
simulation. For octadecanethiol on Au (111), we set l ) 0.5
nm according to the experimental SAM structure (0.5 nm is
the distance between adjacent thiol molecules of SAM).4 If no
experimental measurement can be related to the grid spacing,
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we might approximate it as the effective diameter of molecule
(assuming two spherical molecules in contact at their closest
approach). The time step dt can be given a physical dimension
as follows. If the molecular diffusivity D is known, we use the
correspondence between the random walk and continuous space
diffusion given by dt ) l2/(4D).6 Notice D refers to the molecular
diffusion in the upper layers, not the surface diffusion on the
bare substrate. We here approximate it as the bulk self-diffusion
coefficient. If the bulk diffusivity is not available, it can be
estimated from viscosity η by using the Stokes-Einstein
relation,22 D ) (kBT)/6πηr, where r is the effective radius of
the molecule. For octadecanethiol on Au (111), we take η as
the viscosity of octadecane at 323.15 K under atmospheric
pressure ()2.46 × 10-3 Pa · s).23 Using the viscosity and taking
the radius r as l/2 ()0.25 nm) we get D ) 3.6 × 10-6 cm2 s-1

and dt ) 176 ps for T ) 298 K.

III. Results and Discussion

We illustrate the growth process of SAM resulting from the
serial pushing model. Figure 2 shows four consecutive snapshots
for the SAM created by a tip fixed in position at the origin.
With a dripping rate of n* ) 1, the tip is continuously dropping
molecules from t ) 0 to 1000. Snapshots are taken at t ) 100
(top left), 300 (top right), 700 (bottom left), and 1000 (bottom
right). Molecules above the bottom layer are not shown. On
the whole, the SAM is isotropic and circular in shape. Due to
the random nature of diffusion, however, the SAM periphery
deviates from a circle, especially for the small SAMs at early
times (top two panels). We quantify the deviation of the SAM
periphery from a circle as follows. We first sort out the
peripheral points of SAMs by defining them as molecules with
less than four nearest neighbors on the substrate. We calculate
the average µR and the standard deviation σR of the distances
of peripheral points from the center. µR can be identified as the
radius of a circle with the same size as the SAM. σR represents
the deviation of the SAM from that circle. We found µR values
of 5.1, 10.7, 14.4, and 17.3 for the top left, top right, bottom
left, and bottom right of the figure, respectively. σR values are
0.75, 0.83, 0.89, and 0.82, respectively, for the top left, top right,

bottom left, and bottom right of the figure. As the tip contact
time t increases, µR increases but σR remains about the same.
We previously introduced a circularity N as an estimate of how
close the SAM is to a circle.6 It is defined as the number of
sides of an imaginary polygon that mimic the SAM periphery
and is given by N ) 1.3869(µR/σR)0.4721.24 A large N indicates
a close resemblance to a circle (N is infinity for a circle). Using
µR and σR above, we found N values in Figure 2 of 3.4 (top
left), 4.7 (top right), 5.2 (bottom left), and 5.9 (bottom right).
These N values quantitatively show that the SAM becomes
increasingly circular as it grows in size.

In Figure 3, we compare the SAMs from the pushing and
the hopping models. Shown are snapshots of both the models
taken at t ) 500 (top two panels) and 1000 (bottom two panels).
All the simulation conditions are identical to those in Figure 2.
At a given time, the SAM from the pushing model (top right
and bottom right) is larger than that from the hopping model
(top left and bottom left). At t ) 500, there is a hole near the
periphery of the SAM for both models. The SAM periphery
sometimes has a local geometry that looks like a rectangular
trench which is two molecules deep and one molecule wide.
Later, a protrusion of molecule in the periphery can accidentally
close the open entrance of the trench. Holes in the figure are
formed in this way. We did not observe any holes further inside
of the SAM. Therefore, the SAM primarily grows in a compact,
isotropic form regardless of the model. All in all, the shape of
the SAM looks similar for both models. µR (σR) values for the
figure are 10.7 (0.7), 12.1 (0.8), 15.4 (0.74), and 17.3 (0.82)
for the top left, top right, bottom left, and bottom right,
respectively. Although both µR and σR of the pushing model
are larger than those of the hopping model, the circularities of
two models are quite similar. We found N ) 5.0 (top left), 5.0
(top right), 5.8 (bottom left), and 5.9 (bottom right).

Instead of comparing SAMs at the same time as in Figure 3,
we now examine the SAMs consisting of exactly the same
number of molecules from both models. After dropping a total
of 1000 molecules, we ran further simulations without molecular
dropping until all the molecules eventually bound to the
substrate. For three different dripping rates, n* ) 0.1, 1, and
10, we ran 10 independent simulations and averaged over the
runs. In the case of a slowly dripping tip (n* ) 0.1), the average

Figure 2. Growing self-assembled monolayer in the random walk
simulation using the serial pushing model. Shown are snapshots taken
at t ) 100 (top left), 300 (top right), 700 (bottom left), and 1000 (bottom
right). The tip is fixed in position, and its dripping rate is n* ) 1. In
this and all the following figures, length and time are in units of the
grid spacing and the time step of random walk, respectively.

Figure 3. Comparison of monolayers obtained from the serial pushing
and the hopping down models. Snapshots for the serial pushing (hopping
down) model are drawn in the top right (left) and bottom right (left)
panels. The tip contact times t are 500 and 1000 for the top two and
the bottom two panels, respectively.
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circularity N is 6.2 (from µR ) 17.4 and σR ) 0.73) and 5.7
(from µR ) 17.4 and σR ) 0.87) for the hopping and the pushing
models, respectively. For n* ) 1, N is 6.0 (from µR ) 17.4 and
σR ) 0.78) and 5.9 (from µR ) 17.4 and σR ) 0.82) for the
hopping and the pushing models, respectively. In the case of a
fast dripping tip (n* ) 10), N is 6.0 (µR ) 17.4 and σR ) 0.78)
and 5.8 (µR ) 17.3 and σR ) 0.84) for the hopping and the
pushing models, respectively. Irrespective of n*, the circularity
of the pushing model is slightly less than that of the hopping
model due to an increased σR. We additionally considered SAMs
consisting of 100 or 10 000 molecules for both models. The
SAMs from the pushing model are constantly lower in circular-
ity. The lower circularity of the pushing model can be attributed
to a relatively enhanced molecular mobility of the model.

Figure 4 shows a side view of a multilayered droplet below
the tip (due to the molecular flux out of the tip). For the pushing
and the hopping models, we show snapshots taken at t ) 250
for n* ) 1 (top two panels) and 10 (bottom two panels). The
droplet from the hopping model (top left and bottom left) is
substantially taller and wider than that from the pushing model,
especially for the fast dripping tip (bottom left). In the serial
pushing model (top right and bottom right), the droplet is
nothing more than several molecules sitting on top of the bottom
monolayer. Due to the enhanced molecular mobility of the
pushing model, the area below the tip is not as congested with
molecules as in the hopping model. All the droplets in the figure
look more or less symmetrical laterally. For the smallest dripping
rate (n* ) 0.1, not shown), a multilayered droplet like in Figure
4 hardly exists for both models.

We now give a quantitative analysis of the radial growth of
the SAM. We calculated the distance squared of each peripheral
point from the center and averaged over all the peripheral points.
In addition, we ran five independent simulation runs and
averaged over the runs. Such an average of the distance squared
is defined as the radius squared of the SAM, R(t)2. Our
simulation shows R(t)2 from the pushing model is a linear
function of time, showing a diffusive growth in its time
dependence. In Figure 5, R(t) is plotted as a function of time
for various dripping rates, n* ) 10 (filled circles), 1 (filled
diamonds), and 0.1 (filled triangles). For comparison, we plot
R(t) from the hopping model for each n* (open symbols with

the same shape as in the pushing model). In the continuous space
limit, R(t)2 in the hopping down model is analytically given by
R(t)2 ) λ24 Dt, where λ2 is determined by the equation exp(-λ2)
) (4Dλ2)/(n/π).6 For a slowly dripping tip (n* ) 0.1), R(t) values
from the two models are indistinguishable. In the hopping down
model, if the molecular dripping is extremely slow, molecules
have plenty of time to self-assemble on the substrate between
two consecutive dropping events. Then the molecular mobility
D should not matter, and R(t) depends on n only. An analytic
expression R(t)2 ) (n/π)t can be obtained in this limit.6 As the
dripping rate increases to n* ) 1 and 10, however, the radial
growth of the present model becomes faster than that of the
hopping model. We fitted the radius squared from each model
with a linear function of time, R(t)2 ) at, by using the least-
squares method. As a measure of relative speed of radial growth,
we calculated the ratio of a values from both models. The ratio
was found to be 1.26 and 2.84 for n *) 1 and 10, respectively.
With an increase in the dripping rate, the radial growth from
the pushing model becomes increasingly faster than that of the
hopping down model.

Let us switch to the case of a moving tip. Now the tip scan
speed enters as another variable in simulation. The top right
and bottom right panels of Figure 6 sequentially show a line
created by a tip moving upward with a speed of V* ) 0.25.
The dripping rate n* is 10, and the snapshots are taken at t )
200 (top right) and 500 (bottom right). Under the same
conditions as above, a line created from the hopping model is
drawn in the top left and bottom left. The line from the pushing
model is fairly uniform in its width, but the line boundary of
the hopping model looks like a parabola. Every line in the figure
fluctuates in its periphery from a straight vertical line due to
the nature of random walk. Although not shown here, for
dripping rates smaller than 10, lines from two models become
more similar than in the figure.

We consider more complex patterns generated by a moving
tip. Using the same tip speed and dripping rate as in Figure 6,
we have drawn in Figure 7 cross (top two panels) and gamma
(bottom two panels) characters using the pushing and the
hopping models. The crosses are generated by first drawing the
vertical line (tip moving upward) and then the horizontal line

Figure 4. Side view of the droplet created under the tip. All snapshots
are taken at t ) 250. The dripping rate of the tip is n* ) 1 for the top
two panels and n* ) 10 for the bottom two panels. For each n*, the
droplet from the hopping model (left panel) is compared to that of the
pushing model (right panel).

Figure 5. Time-dependent radius of self-assembled monolayer R(t).
R(t) is plotted as a function of time t for dripping rates of n* ) 0.1
(filled triangles), 1 (filled diamonds), and 10 (filled circles). The data
for each n* look like a smooth curve because they are closely spaced.
The symbols are drawn for every 100 time steps to distinguish different
curves. For each n*, R(t) from the hopping down model is plotted for
comparison (marked as open symbols with the same shape used for
the pushing model).
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(tip moving left to right). At the crossing point, the pattern from
the pushing model (top right) is substantially broadened due to
the repeated dropping of molecules at the same spot. As already
found in Figure 6, the pushing model (top right and bottom
right) gives a line broader in width (both vertical and horizontal
directions). Because of the large blurring at the center, the lines
of the cross in the pushing model (top right) are not as uniform
as in the hopping model (top left). The blurring of the SAM at
the corner of the gamma character is also more significant in
the pushing model (bottom right). Beside these details, the cross
and gamma characters are qualitatively similar for both models.

The present serial pushing is directionally incoherent in that
the molecular displacement induced by push takes a random

direction. As discussed in the Details of Model and Simulation
section, the directional coherence length Nd is zero in this case.
We can choose a different Nd instead. If Nd is taken to be infinity,
all the push-induced movements take the same direction as the
initial pushing direction. The resulting SAM is a long, narrow
cross except for the round broadening at the center (top left,
Figure 8). The roundness of SAM at the center arises from the
hopping down events which occassionally occur for a small
sized SAM. The fourfold symmetry of branch structure arises
from the anisotropy of the substrate (note there are only four
lateral directions on the substrate). We also simulated the case
where the directional coherence exists up to a finite number of
consecutive movements. In the case of Nd ) 10 (top right), the
SAM is more compact than for Nd ) ∞ and has many branches.
As the thick branches near the center of the SAM extend
outward, they ramify into smaller and shorter branches. One can
still discern the fourfold symmetry arising from the substrate
anisotropy. We also notice several holes in the SAM which are
located somewhat inside (in contrast to the tiny hole very close
to the periphery in Figure 3). A hole in this case develops from
linking of branches during the SAM growth: the SAM starts
out as a cross, and, as time goes by, the cross ramifies into a
more complex structure. During the ramification, two growing
branches join to give a hole like one of those shown in the top
right of Figure 8. As Nd decreases to 5 (bottom left), the SAM
becomes even more compact and its branches are shorter, less
pronounced, and mainly located near the periphery. Now we
do not see the fourfold symmetry of the SAM. The structure is
quite analogous to the directionally incoherent case (shown for
comparison in the bottom right), but it is more fluctuating in
periphery and has longer branches.

It would be interesting to investigate how the above branch
structure turns out for a substrate with different anisotropy. For
example, Au (111) is a well-known substrate for DPN and has
a trigonal lattice structure. Our preliminary simulation shows a
sixfold hexagonal branch structure for the SAM in the case of
a directionally coherent pushing. Here the substrate anisotropy
plays out more interestingly. The two adjacent branches of a

Figure 6. Line drawing by a moving tip. The tip is moving upward
with a speed of V* ) 0.25, and its dripping rate is n* ) 10. The line
from the serial pushing (hopping down) model is sequentially drawn
in the top right and bottom right (top left and bottom left). The snapshots
are taken at t ) 200 (top two panels) and 500 (bottom two panels).

Figure 7. Cross and gamma characters drawn by a moving tip for the
serial pushing (top right and bottom right) and hopping down (top left
and bottom left) models. The tip scans with a speed of V* ) 0.25, and
its dripping rate is n* ) 10. To create the cross, the tip moves vertically
upward and then laterally from left to right. The gamma character is
written similarly by first moving the tip upward and then laterally right.
The snapshots are taken at t ) 1000.

Figure 8. Self-assembled monolayers obtained by using various
directional coherence lengths Nd. The tip is fixed, and n* ) 1. All the
snapshots are taken at t ) 1000. Shown in the top left is the monolayer
where all the sequential pushes have the same direction as the initial
pushing (Nd ) ∞). In the top right and bottom left, we show the case
where only a finite number of push-induced movements have the same
direction. Nd ) 10 (top right) and 5 (bottom left). For comparison, the
default case of zero coherence length is shown in the bottom right.
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growing hexagonal SAM sometimes join together to give a new
branch growing in the middle direction of them. We also find
the monolayer from the pushing model agrees well with that of
the previous molecular dynamics simulation.10 A detailed
account of the trigonal substrate will be presented elsewhere.

IV. Concluding Remarks

Motivated by the mechanism found in molecular dynamics
simulations, we proposed a novel diffusion model for the dip-
pen nanolithography. In this serial pushing model, molecules
dropping from the tip push molecules on the substrate out of
their original positions. If a molecule just pushed out jumps
upon its own neighbor at still, another push is invoked. Such a
sequential pushing propagates all the way from its origin to the
periphery of the SAM. The consecutive push-induced move-
ments occur instantaneously on the time scale of diffusion. By
default, every push-induced move takes a random direction. This
pushing model is in stark contrast with the previous hopping
down model which forbids such a push due to the excluded
volume effect. A molecule instead moves on top of immobile
molecules trapped on the substrate. These seemingly disparate
models give SAMs similar in shape. There is quantitative
difference, however. Within the same amount of time, the SAM
from the pushing model grows faster, and this difference
becomes more significant as the tip dripping rate increases.
When two SAMs of the same size are compared, the SAM from
the pushing model deviates slightly more from a circle, probably
due to the enhanced molecular mobility in the pushing model.

A salient feature of our model is the directional coherence
length of push-induced displacement. This is the number of
consecutive moves which take the same direction. Our default
model opts for zero coherence length so that the direction of
every displacement is random. The resulting SAM is compact
and circular as in the hopping model. If we choose a finite value
for the directional coherence length, however, a branched SAM
forms. Depending on the value, the SAM has distinct branches
extending far out from the center (for a large coherence length),
or it becomes a compact dot with many short branches near its
periphery (for a small coherence length). Due to the anisotropy
of substrate (a square grid), the branched SAM shows a weak
or pronounced fourfold symmetry. The versatility of the present
model in generating various structures of a SAM (from a dot
to a cross) represents an improvement over the previous hopping
model which produces a compact circular SAM only. In some
sense, the present model is inclusive of the hopping model. Note
a hopping down is not prohibited in our model. In fact, for small
SAMs, we occasionally observe hopping down events in
simulation. As the SAM grows in size, however, a molecule
on top is more likely to push out a molecule on the substrate
rather than to step over molecules below and then hop down.

Instead of a sophisticated model of DPN, we here tried to
come up with a simplistic model requiring a minimal set of
parameters. A simple model will be easily adopted for inter-
pretation of experiment and for implementation in computer
programs. The previous hopping down model is limited in its
scope of applicability because it assumes the extreme case of
an irreversible trapping of a molecule by the substrate. The

present model, however, is grounded on the observations in
molecular dynamics simulations. By systematically varying the
parameters of the model (tip speed, dripping rate, and directional
coherence length), we have demonstrated that diverse SAMs
result. It is therefore reasonable to expect that the present model
is applicable to a broader range of experimental systems
compared to the hopping model. The obvious next step is to
quantitatively compare our simulation with experiment. To do
so, we need to obtain the appropriate values for the molecular
diffusivity, the dripping rate, and the directional coherence
length. This is not a trivial procedure, however. Especially, the
exact determination of the diffusivity can be elusive because
the diffusion in our model refers to a molecular motion on top
of the SAM which is neither surface nor bulk diffusion. Leaving
the connection to experiment as future work, the present work
focused on investigating the key features of our model and on
illustrating how the SAM is affected by various parameters of
model.
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