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Over the years, surfaces patterned with periodic pillars have
been utilized as super-hydrophobic surfaces. Such pillared
surfaces are applicable for self-cleaning,1 drag reduction,2,3

coating,4 andmicrofluidics, just to name a few.5 Given micro-
or nano-pillars of various sizes and shapes that can be pat-
terned these days, efforts have been made to find the optimal
geometry of a pillared surface that exhibits maximal hydro-
phobicity. A surface patterned with parabolic pillars is partic-
ularly interesting because of its resemblance to a lotus leaf,
which is well known for its super-hydrophobicity.6

The hydrophobicity of a pillared surface is commonly
assessed by examining whether a water droplet resting on it
penetrates down into the gap between the pillar walls. The
former and latter cases, respectively, are taken to be the Cas-
sie–Baxter7 (CB) and Wenzel8 (WZ) states of the droplet
(Figure 1). Typically, the CB-to-WZ transition is induced
by increasing the spacing S between the pillars or by raising
the pressure P of the droplet.
Using theory and Monte Carlo (MC) simulation, we previ-

ously studied the CB-to-WZ transition for the surfaces cov-
ered with rectangular, cylindrical, and parabolic pillars.9,10

Interestingly, with increasing S or P, the water droplet pene-
trated down into the gap between parabolic pillars smoothly
from the top to the bottom of the pillars.10 This contrasts with
the abrupt penetration (at a critical value of S or P) into the gap
between rectangular or cylindrical pillars, which is character-
istic of a first-order phase transition.
Currently, it is unclear whether the smooth intrusion of the

droplet into the gap between the parabolic pillars will be valid
when the parabolic pillars become tall and sharp like needles.
Here, we investigate the CB-to-WZ transition for various
aspect ratios of parabolic pillars. By employing the lattice
gas MC (LGMC) simulation, we continuously changed S or
P to observe the CB-to-WZ transition. The present LG model
is a minimal molecular model that captures the essence of the
phase transition of a confined water droplet. A detailed
description of the present LGMC simulation can be found
in our previous work.9–11

Plotted in Figure 1(c) is the average density < ρ > of the
water confined between the parabolic pillar walls as a function
of S. Regardless of the aspect ratio H/W of the pillar (ranging
from 2 to 10), the density smoothly increased from a near-zero
value (vapor phase) to a value close to 1 (liquid phase) as S
increased from 0.7 to 8.9 nm. This smooth increase in the den-
sity is distinctly different from the step-like jump at a critical
value of S found for the gap between the rectangular or cylin-
drical pillar walls. Even quantitatively, the < ρ > vs. S curves
almost overlap with each other. Small differences exist, how-
ever. The liquid densities for large Svalueswere slightly larger
for higher values ofH. On the other hand, the vapor densities at
small values of S slightly decreased with increasing H. The
turnover behavior in the relative magnitudes of the densities
for different H values occurred at approximately S = 6.3 nm.
We examined how the pressure P affects the CB orWZ state

of the water droplet. Figure 2(a) shows < ρ > vs. P for the
water trapped between the parabolic pillars for S = 4.4 nm
and W = 11.8 nm. The height H of the pillar varied from 23.7
to118.4 nm.AsPwas increased from0 to8MPa (with an incre-
ment of 0.5MPa), < ρ > gradually (almost linearly) increased,
owing to the smooth invasion of the droplet down into the
inter-pillar gap. Here again, the CB-to-WZ transition contrasts
with that found for the rectangular or cylindrical pillars, which
exhibited a discontinuous jump at a critical value of P.
Of particular interest is how vulnerable the gap between

the pillar walls is to the increase in P. This is quantified by
the slope of the < ρ > vs. P curve, which is called the pressure
susceptibility in the present work. The pressure susceptibility
is plotted vs. P in Figure 2(b) (drawn as circles). The suscep-
tibility does not have any conspicuous peak characteristic of a
first-order transition. Instead, the susceptibility is broadly dis-
tributed, with a small shoulder located around 7MPa. We
demonstrate that the pressure susceptibility is related to the
fluctuation of the density, h(δρ)2i≡ < ρ2 > − < ρ > 2, where
< ρ2 > is the average of the density squared. Using the statis-
tical mechanical relation < (δρ)2 > = (kBT/N)(∂hρi/∂μ), where
N is the number of total lattice sites of the inter-pillar gap,12

we can write

∂ ρh i=∂P= N=ρbkBTð Þ < δρð Þ2 > ð1Þ† These authors contributed equally to this work.
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here, we further used the approximation dμ = (1/ρb)dp, where
ρb is the bulk density. Therefore, the pressure susceptibility is
proportional to the fluctuation in the density of the inter-pillar
gap.Using theLGMCsimulation result,we calculated the sus-
ceptibility from the density fluctuation, drawn as triangles in
Figure 2(b). The susceptibilities by using the numerical deri-
vatives (circles) sensibly agree with those by using the fluctu-
ation expression, Eq. (1).
In conclusion, we have studied how a water droplet sitting

on top of parabolic pillars penetrates down into the gap
between the parabolic pillar walls as the spacing between
the pillars or the pressure of droplet was increased. This pen-
etration pertains to the CB-to-WZ transition of the droplet. By
using the LGMC simulation, we simulated pillars with various
shapes ranging from dome-shaped to needle-like. Regardless
of the shape, the penetration between the parabolic pillar walls
was always smooth,which is in stark contrast to the abrupt fill-
ing found for the gap between rectangular or cylindrical

pillars. This smooth behavior was also found for the CB-to-
WZ transition induced by increasing the pressure of the drop-
let. We related the pressure susceptibility of the density of the
water confined between the pillarwalls to the fluctuation in the
density of the confined water.
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Figure 1.Snapshots of theCassie–Baxter (a) andWenzel (b) states of
a macroscopic water droplet sitting on a surface covered with para-
bolic pillars. Shown are the cross-sectional snapshots taken along
the planes that vertically dissect the pillars into half (in this case,
the XZ plane). For a fixed pillar height H of 47.4 nm, the inter-pillar
spacing Swas varied as 1.5 (a) and 7.4 (b) nm. S refers to the distance
between the bottoms of the neighboring pillars. In simulation, the par-
abolic pillarswere periodically replicated on a square grid.Mean den-
sity of the water confined in the gap between the pillars < ρ > vs. the
inter-pillar spacing S (c). The height of pillarHwas varied from 11.8
to 59.2 nm by fixing the widthW to 5.9 nm.W refers to the width of
each pillar at its bottom. P was fixed to 4 MPa.
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Figure 2. (a) Pressure dependence of the density of the water
confined between parabolic pillar walls. By fixing S and W to 4.4
and 11.8 nm, respectively, we continuously varied the pressure from
0 to 8MPa. The average density < ρ > vs. P is shown for different
H ranging from 23.7 to 118.4 nm. (b) Pressure susceptibility of the
density vs. the pressure P. The susceptibilities obtained from evalu-
ating d < ρ >/dP numerically and from using the fluctuation, Eq. (1),
are drawn as circles and triangles, respectively. H was fixed at
47.4 nm. Lines serve as visual guide.
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