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Capillary Force on a Nanoscale Tip in Dip-Pen Nanolithography
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Monte Carlo simulation has been used to characterize the capillary force due to the condensation of a
liquid meniscus between a tip with a nanoscale asperity and a flat surface. To consider both hydrophobic
and hydrophilic molecules coating the tip as a model of dip-pen nanolithography, tips with various
wettabilities are studied. The capillary force due to the meniscus is calculated for various saturations
(humidities). We have implemented a thermodynamic integration technique that can project the force
into energetic and entropic contributions. In most cases, the force is mainly energetic in origin. At the
snap-off separation where the meniscus disappears, the tip feels a significant entropic force at high
saturation. Our calculation shows nonmonotonic behavior of the pull-off force as a function of
saturation, which is in qualitative accord with experiments.
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FIG. 1. System geometry and reflecting boundary conditions
used in force calculation. The fluid is a two-dimensional square
lattice gas confined between a flat substrate surface at y � 0 and
an elliptical tip surface with axis lengths of r and r0 lattice
spacings (aspect ratio � � r0=r). The tip surface is separated
from the substrate by h lattice spacings. The left part (x < 0,
open circles) is taken to be the mirror image (relative to x � 0)
of the right (x � 0, black particles). The boundary conditions
for x > r are invoked by taking a mirror image of the system
tice models of fluid systems. with respect to x � r.
Among the various phase transitions found in geomet-
rically confined systems, capillary condensation [1] in
particular is important to the recently developed dip-pen
nanolithography (DPN) [2]: Under ambient conditions,
water vapor condenses to form a liquid meniscus between
a sharp (with a nanoscale radius of curvature) atomic
force microscope (AFM) tip and a substrate surface.
The molecules coated on the tip are then transported
through or on the meniscus to the substrate. Previously,
we have presented a theoretical analysis of the thermody-
namic properties of the liquid meniscus for hydrophobic
and hydrophilic AFM tips. The meniscus width and shape
were characterized as a function of tip curvature, tip-
substrate distance, humidity, and temperature [3].

In DPN (more generally, in any experiment utilizing an
AFM-type probe), what is directly observed is the force
exerted on the tip by the surface. Under ambient condi-
tions, the capillary force due to the water meniscus
usually dominates other contributions to the tip-surface
interaction, and thus is crucial in determining adhesional
and tribological properties of surfaces. There have been
many experiments reporting how the capillary force
varies with changing humidity [4–6]. Relying on macro-
scopic theories for fitting the data, these experiments have
not provided any microscopic insights into the capillary
force. On the theoretical side, most studies [7–11] have
focused on slitlike geometries with emphasis on surface
force apparatus experiments [12]. A recent theoretical
study of the capillary force associated with a nanoscale
tip was again based on the macroscopic Kelvin equation
[13] and thus lacks microscopic details such as the for-
mation of layers on the surface and fluctuations in the
meniscus width [3]. In this Letter, we report the first
microscopic Monte Carlo calculation of the capillary
force relevant to DPN: the force associated with a nano-
scale tip in (near) contact with a surface.We also present a
novel methodology for calculating surface forces in lat-
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As in Ref. [3], we utilize a two-dimensional lattice gas
model [14] for water and systematically study the effects
of humidity, tip wettability, and tip-substrate distance.
The fluid is represented on a square lattice (with a lattice
spacing l) bounded by an elliptic tip surface and a flat
substrate surface (Fig. 1). Each occupied site of our system
interacts with its (occupied) nearest neighbor sites with
an attractive energy �. A fluid particle binds to the tip and
substrate surfaces with energies bT and bS, respectively.
Assuming our system is in thermal and phase equilib-
rium with a bulk reservoir specified by temperature T and
chemical potential �, we utilize grand canonical Monte
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Carlo (GCMC) simulations (for more details, see Ref. [3]).
In this simulation, both energy E and number of particles
N are variable quantities, and the thermodynamic poten-
tial to be minimized is the grand potential � � H � TS,
where H is the effective energy ( � E��N) and S is the
entropy.

To emulate the water confined between a gold surface
and an AFM tip, we use the following geometric and
energetic parameters. The lattice spacing, l, represents the
intermolecular distance in water, which is approximately
3:24 �A [3]. The tip radius parameter r is defined to make
r=l � 140 and, as a result, the simulation box covers
91 nm along the surface. The tip curvature is taken to
be � � 2 to mimic a tip with a nanoscale radius of
curvature (�23 nm). The nearest neighbor attraction �
for water is roughly 20 kJ=mol and the water-gold binding
energy is about 60 kJ=mol [15]. We thus take bS=� � 3 in
our simulation, which makes the fluid completely wet the
substrate [16]. To examine both hydrophilic and hydro-
phobic tips in DPN, we consider three different tip bind-
ing energies, bT=� � 3, 0.75, and 0.25, whose wetting
properties are completely wetting (CW) , partially wet-
ting (PW), and partially drying (PD), respectively [16].
The wetting tips (the CW and PW tips) correspond
to hydrophilic tips, and the PD tip to a hydrophobic tip.
The temperature was set to simulate water at room tem-
perature (300 K), T=Tc � 0:46, where Tc is the bulk
critical temperature for the lattice gas [���=2kB�=
ln�1�

���
2

p
�] [14]. Identifying Tc as the water critical tem-

perature (647.30 K) gives � � 9:5 kJ=mol for water.
Simulations are run by varying the tip-substrate distance
as well as the saturation (which corresponds to relative
humidity for water) defined as sat � exp
����c�=kBT�,
where �c is the chemical potential at the bulk gas-liquid
transition (�� 2�) [14].

Evaluation of the capillary force from simulation fol-
lows a lengthy, indirect route as is now discussed. This is
due to the fact that the gradient of the molecular inter-
action is not defined in our lattice system, and thus virial-
type (involving averages of the gradient of interaction
potential) expressions [10,11] for forces cannot be applied.
Therefore, we use the following expression for the force at
the tip-substrate distance h [8,9]:

F�h� � �

�
@�
@h

�
�;T

� p
�
@V
@h

�
�;T

; (1)

where V is the system volume, and p is the pressure of the
bulk system. To obtain � and p from simulation, we adopt
a thermodynamic integration method which has been
widely used in locating the exact transition point for
gas-liquid phase transitions [17,18]. Specifically, we uti-
lize the following relation [17]:

�� � �0�0 �
Z �

�0

H��� d� �� � 1=kBT�; (2)

where the zero subscript represents a reference state
whose grand potential is known exactly. To evaluate the
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grand potential at the desired temperature �, we choose
infinite temperature (�0 � 0) as the reference state and
discretize the integral in Eq. (2) by using Simpson’s
rule. The potential gradient in Eq. (1) is then evaluated
as �@�=@h� � 
��h� l� ���h��=l. The bulk pressure, p
(note p is the bulk grand potential per unit volume), is
calculated by running separate simulations for a bulk
system and using the same thermodynamic integration
technique described above. A nice feature of evaluating
� directly is that the force can be naturally divided into
energetic and entropic contributions, as the grand poten-
tial is the sum of an energy (H) and entropy (TS). We note
that Fisher [19] has considered energetic and entropic
contributions (which become identical at Tc) to the sur-
face energies of droplets in a homogeneous gas. In con-
trast, the current analysis (see below) focuses on energetic
and entropic contributions to the force (gradient of energy
with respect to h). Also, the droplets in this study arise
from inhomogeneous geometric confinement, rather than
spontaneous nucleation in the bulk.

For completeness, we explored another thermodynamic
integration method for calculating the capillary force.
A useful expression for the force was derived by Ash
et al. [20]:

F��; h; T� � F�� � �1; h; T� �
Z �

�1

�
@Nex

@h

�
�0

d�0;

(3)

where Nex is the excess number of molecules of our
system relative to that in a bulk system with the same
volume V. We call the above equation the � integration
method as opposed to the T integration method [Eq. (2)].
Starting from a sufficiently low chemical potential which
should give zero force, we discretize the integral in Eq. (3)
following a procedure similar to that done in discretizing
Eq. (2).

The force-distance curves for the PW tip at several
saturations are drawn in Fig. 2. All the forces reported
in this paper are in units of �=l (�49 pN for water), and
are assumed to be obtained from the T integration
method if we do not specify which method is used. As
can be seen in the figure, the closest possible distance
h � l is the most unfavorable. When the tip is too close to
the substrate, it actually displaces the molecules out of the
tip-substrate contact region, reducing the total adhesive
energy of the liquid meniscus. The most stable system
geometry is the case where h=l � 2. The above observa-
tions are made for all the tip wettabilities and saturations
considered in our simulation. The repulsive nature of the
capillary force at the shortest distance cannot be captured
by the macroscopic thermodynamic approach [13]. As the
tip recedes from the substrate, the meniscus disappears
and the force approaches zero. At low saturations (20%
and 40%), the force-distance curve has a narrow well
located at h=l � 2 and the force goes to zero at short
distances (at h less than 7l). As the saturation increases,
156104-2
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FIG. 3. The capillary force F�h� and its projection onto the
energetic and entropic contributions for the CW tip at low
(45%) and high (85%) saturations. The entropic force is negli-
gible in most cases. At the snap off of meniscus for high
saturation [h=l � 12, bottom], however, it becomes significant
and accompanied by an energetic force of nearly the same
magnitude in the opposite direction.
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FIG. 2. The capillary force, F�h�, vs the tip-substrate dis-
tance h for the PW tip at various saturations. As saturation
increases, the narrow dip located at h � 2l in the force curve
broadens and decreases in depth. The force is attractive (re-
pulsive) if it is negative (positive). In this and all the following
figures, lines are drawn as guides to the eyes.
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the narrow well in the force curve becomes broad and
plateaulike, and the force vanishes rather smoothly as h
increases. The above trends are also found for the PD and
CW tips, and are physically reasonable: As the humidity
increases, the tip is wetted more completely, and with-
drawing the tip from the substrate involves gradual shed-
ding of many layers of water from the tip. This accounts
for both the breadth and the shallowness of the higher
humidity plots in Fig. 2.

As we pointed out earlier, the T integration technique
allows us to divide the force into energetic and entropic
parts. Such a projection is done in Fig. 3 for the CW tip at
low and high saturations. At most tip-substrate distances,
the entropic force is negligible and the energetic contri-
bution dominates the capillary force. At the snap-off
distance (h=l � 12 for saturation 85%) for high satura-
tion, however (Fig. 3, bottom), the entropic force is com-
parable to the energetic force. As the meniscus snaps off,
the tip experiences a repulsive entropic force which drives
the transition from liquid meniscus to a gaslike state. This
is almost perfectly counterbalanced by an attractive force
arising from loss of adhesive energy which resists the
energetic destabilization, such that the net force varies
smoothly with separation. We performed projections
similar to Fig. 3 for the PD, PW, and CW tips for satu-
rations ranging from 5% to 90%. The entropic forces are
found negligible at all saturations for the PD tip, at
saturations below 80% for the PW tip, and at saturations
below 75% for the CW tip.

The magnitude of the maximum attractive force in the
force-distance curve (e.g., the force at h=l � 2 in Fig. 2) is
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called the pull-off force [4]. In Fig. 4, we plot how the
pull-off force varies with saturation for different tip
wettabilities. The � integration method, Eq. (3), yields
nearly identical pull-off forces to those obtained by using
the T integration method. Overall, the pull-off force rises
as we increase the tip wettability: The average forces in
the range of saturations between 5% and 80% are 3.3, 9.2,
and 13.4 (in physical dimensions relevant to water, these
are 0.16, 0.45, and 0.66 nN) for the PD, PW, and CW tips,
respectively. The figure reveals that the pull-off force
quickly grows from zero at extremely low saturation to
a maximum at approximately 0:06% saturation for the
PD and PW tips and at 0:012% for the CW tip. This means
that a liquid meniscus forms at low saturation and broad-
ens as saturation increases. This broadening leads to an
increase in the pull-off force at low saturation. Then, at
higher saturation, the force diminishes slowly with in-
creasing saturation.

The pull-off force is often reported experimentally [4–
6] as a function of humidity. The qualitative behavior of
force vs saturation found in our simulation is in accord
with some of experiments (specifically, the forces be-
tween a hydrophilic Si3N4 tip and a mica surface [4]
and between a hydrophilic tip and a silicon surface [5]).
The saturation at which the pull-off force peaks, however,
is small compared to the experimental values (�20% [4]
and �70% [5]). This is probably due to the rather
strong fluid-substrate and fluid-tip interactions used in
the calculations. When we used a less strong fluid-surface
interaction, the force reaches a maximum at a higher
156104-3
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FIG. 4. The saturation dependence of the pull-off force for
different tip wettabilities. The results from two different ther-
modynamic integration techniques are plotted for comparison.
At extremely low saturation, the force increases with increasing
saturation up to a peak. Further increases in saturation lead to a
slow decrease.
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saturation. For example, for bS=� � 2 and bT=� � 0:25,
the maximum pull-off force is located at 20% saturation.
Our pull-off forces are hundreds of pNs in magnitude at
most which is ten to hundred times less than typical
experimental pull-off forces of several nN [4–6]. This
is because our two-dimensional simulation underesti-
mates the force arising from the three-dimensional liquid
meniscus. We can obtain a rough estimate of the three-
dimensional force by assuming it is proportional to the
number of molecules in the meniscus. Thus, the force in
three dimensions is approximated as the corresponding
two-dimensional force times the ratio of numbers of
molecules in the three- and two-dimensional menisci.
Our three-dimensional simulation (using the same ener-
getic parameters as in this Letter) [21] yields a number
ratio of 116 on average. This explains the nearly 2 orders
of magnitude difference between our two-dimensional
forces and typical experimental values.

In summary, we have presented the first GCMC calcu-
lation of the capillary force for a nanoscale tip interacting
with a flat surface. To examine both hydrophilic and
hydrophobic tips such as are used in DPN, tips with
156104-4
different wettabilities are simulated. Based on a two-
dimensional lattice gas model, we studied the capillary
force by systematically varying the tip-substrate distance
and saturation. We have also presented novel methods to
calculate the force from the simulation, and we have been
able to decompose the force into energetic and entropic
parts. We can certainly think of a more sophisticated
version of our force calculation; i.e., a three-dimensional
lattice gas simulation [21] and/or including van der Waals
forces between solid surfaces. The current calculation
based on a simple model, however, seems to catch the
characteristics of the experimental pull-off forces.
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