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Self-assembly of ink molecules in dip-pen nanolithography:
A diffusion model

Joonkyung Jang, Seunghun Hong, George C. Schatz, and Mark A. Ratner
Department of Chemistry, Materials Research Center and Center for Nanofabrication
and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208

~Received 12 March 2001; accepted 17 May 2001!

The self-assembly of ink molecules deposited using dip-pen nanolithography~DPN! is modeled as
a two-dimensional diffusion with a source~tip!. A random walk simulation and simple analytic
theory are used to study how the diffusion dynamics affects patterns generated in DPN. For a tip
generating a constant flux of ink molecules, circles, lines, and letters are studied by varying the
deposition rate of ink molecules and the tip scan speed. Even under the most favorable condition
studied here, peripheries of patterns fluctuate from perfect circles or lines, due to the random,
diffusional nature of self-assembly. The degree of fluctuation is quantified for circles and lines.
Circles generated by fixing the tip position do not depend on the deposition rate if the same amount
of ink is deposited. For a moving tip, patterns change drastically depending on tip speed and
deposition rate. Overall, fast scan or slow deposition relative to the diffusion time scale makes lines
narrower. When the tip deposits ink too slowly or scans too fast, patterns become incoherent,
making molecules in patterns separated from each other. Therefore, there seems to be an optimal
choice of the deposition rate and tip speed that gives both narrow and coherent patterns. We also
explore the consequences of varying the relative rates of diffusion of ink molecules on bare surface
and on previously deposited molecules. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1384550#

I. INTRODUCTION

Dip-pen nanolithography ~DPN! ~Refs. 1–4! has
emerged as a promising tool for constructing nanostructures
on surfaces. With the use of an atomic force microscopy
~AFM! tip coated with molecular ink~i.e., alkanethiol!, one
can transfer ink molecules to a substrate surface~i.e., gold!
and draw patterns with nanoscale resolution. There is some
evidence that the ink transport from the tip is mediated by a
water meniscus that forms between the tip and the surface
under atmospheric conditions.4,5 The success of DPN relies
on two factors: a spatially narrowdepositionof ink mol-
ecules from the tip andself-assemblyof the ink molecules
functionalized to chemisorb to the substrate and to form a
compact monolayer on the surface.

Exactly how DPN works is largely unknown, leading to
questions such as: What is the ultimate resolution of DPN?
How sensitive is it to temperature and humidity? The depo-
sition of ink is required for DPN, but the whole process ends
only after the molecules move across the surface and finally
are trapped by adsorbing sites of the substrate. It is the latter
aspect of DPN that we would like to focus on in this paper.
We take the molecular flow from the tip as given, and study
how molecules diffuse and self-assemble to form patterns
after deposition.

The model we propose for the self-assembly involves
diffusion of ink molecules on a two-dimensional lattice with
trapping sites~Fig. 1!. Let us consider the simplest case
where the ink is deposited from a tip fixed in position. To
mimic the strong chemical bond between the substrate and
ink molecule in DPN, we assume molecules become imme-

diately trapped and are immobile once they reach one of the
chemisorbing bare metal sites on the surface. Then the mol-
ecules deposited earlier in time will be likely to be adsorbed
sooner than the later ones. And molecules deposited later in
time, finding the chemisorbing sites near the tip already oc-
cupied by molecules deposited earlier, have to travel farther
to reach previously unoccupied trapping sites. Due to the
finite mobility of the ink molecules, the area around the tip
could be congested depending on how fast molecules are
deposited from the tip. The transport then can be thought of
as being driven by the concentration gradient from the high
density region~around the tip! to the zero coverage region
~unoccupied trapping sites!. The above argument suggests
that, at least phenomenologically, DPN can be viewed as a
diffusion with a source~tip!.

With this diffusional picture of the self-assembly, what
becomes important is the relative time scale of diffusion with
respect to that of deposition. If diffusion is much faster than
deposition, adsorption might occur in a one-molecule-at-a-
time fashion. But if the reverse is true, the transport would
involve simultaneous diffusion of many molecules. It has
been recognized that molecular diffusion in self-assembly
limits7 the resolution of microcontact printing (mCP!,8,9

where the patterns are deposited through an elastomer stamp.
In contrast to the parallel nature ofmCP, DPN is a serial
lithographic technique. In order to generate patterns in DPN,
one needs to move the tip across the surface. Then a signifi-
cant issue is how the relative tip speed compared to the dif-
fusion time scale affects properties of patterns.

In this paper, we adopt a random walk simulation to

JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 6 8 AUGUST 2001

27210021-9606/2001/115(6)/2721/9/$18.00 © 2001 American Institute of Physics



study how the patterns change as we vary the time scales of
deposition and tip scan relative to that of diffusion. We dis-
cuss the qualitative behavior of circles, lines, and letters with
respect to variation of these variables. To compare our simu-
lation with a specific experiment, the diffusivity needs to be
identified. We use earlier measurement of diffusion constants
to provide estimate of the relevant time scales in DPN.

It should be noted that our model assumes two distinct
regions in which the dynamics of self-assembly occur; mol-
ecules diffuse only over the region already covered by other
molecules and are immediately trapped by any contact with
the bare surface. Thus the conventional surface diffusivity
with which adsorbates diffuse over the bare surfaces10 is
taken to be zero. Then the growth of patterns can be thought
of as the growth of a phase with a finite diffusivity in contact
with a phase with zero diffusivity. With this notion, our
model poses a new type of phase growth problem.11,12 We
show that the growth of circles in our model reduces to the
well known problem of the phase growth in diffusion theory.
A simple analytic theory is derived for the circle growth and
shown to agree well with simulation. We also consider simu-
lations in which the diffusivity on bare surface is nonzero.

This paper is organized as follows: In Sec. II, we present
simulation details for the random walk on a square lattice. A
continuum theory for circle growth generated by a fixed tip
is given in Sec. III. Results from simulation and the con-
tinuum theory are reported in Sec. IV; circles from simula-
tion are compared with those from the analytic theory, and
their noncircularities are analyzed. We then move on to a tip
moving with various speeds, and examine lines and letters
formed by varying deposition rates. We summarize and con-
clude in Sec. V.

II. DETAILS OF RANDOM WALK SIMULATION

A two-dimensional~2D! random walk simulation with
discrete step and time has been performed to emulate typical
DPN experiments: random walks are allowed between the

sites on a square lattice with a grid lengthl and a time inter-
val Dt. Note that, to conform to 2D diffusion picture,Dt and
l should satisfy

4DDt5 l 2. ~2.1!

Every site on the lattice is assumed to trap ink molecules;
thus, if a molecule arrives at a site previously unoccupied by
other molecules, it is trapped. If the site is already occupied,
molecules are free to continue walking. This way, the diffu-
sion takes place only in a region where a monolayer of
trapped ink molecules exists. In light of the isotropic flow of
ink over the surface observed in DPN experiments,4 the ran-
dom walk is taken to be directionally isotropic: for a given
lattice position of a walker, (x,y), the random jump is made
~if it is allowed! with equal probability to one of its four
nearest neighbor sites, (x1 l ,y), (x2 l ,y), (x,y1 l ), and
(x,y2 l ).

When more than two molecules occupy the same lattice
site during simulation, the order in time at which each mol-
ecule has arrived at that site has been tracked. And the
walker that arrived later is given a higher vertical position on
the site, and the molecules are stacked from bottom up in the
increasing order of their arrival times~i.e., if there are three
molecules on a lattice site, we assign vertical positions 1, 2,
and 3 to molecules in the ascending order of their arrival
times!. For each walker, the excluded volume effect due to
its four neighboring molecules is taken into account as fol-
lows. For every random jump of a walker, the jump is ac-
cepted only if the current vertical position of the walker is
higher than the highest vertical position of the site it jumps
to. With this scheme, molecules are moved sequentially for
every time step. Since the sequence now is important due to
the excluded volume effect, we randomly choose the order in
which each molecule moves. After each random jump, we
made sure every site is stacked properly from bottom up. If a
site is not properly stacked~i.e., a site is occupied by mol-
ecules with vertical positions 1, 2, and 3, and then molecule
with vertical position 2 jumps to another site!, the vertical
positions of molecules on the site are adjusted. To assess the
importance of the excluded volume effect, we also ran a
simulation without such effect and compared it with the full
simulation.

The source of ink, that is the tip, is allowed to move
between the discrete sites on the lattice. A range of tip scan
velocity v relative to the diffusion velocity,v* 5v/( l /Dt),
has been studied. For a tip moving slowly,v* ,1, the tip is
displaced by one grid length for every 1/v* time step (1/v*
is chosen to be an integer!. Whenv* .1, the tip movesv*
grid points per time step. To generate a variety of patterns, it
is necessary to move the tip diagonally or in a direction other
than x or y. In this case, the tip position could end up not
being on one of the square lattice points. When that happens,
the ink molecules are deposited at the sites nearest to the tip.

In Fig. 2 are shown the radii of circles generated for
various contact times between the tip and a polycrystalline
gold surface. The radius is measured after octadecanethiols
~ODT! deposited by the tip form a monolayer on the gold
surface at room temperature and under atmospheric
condition.6 The inset for the figure shows representative

FIG. 1. Proposed transport mechanism of ink molecules from the tip to the
substrate. The incoming molecular flux from the tip creates a concentration
gradient around the tip, and ink molecules subsequently diffuse over the
region already occupied by other ink molecules~drawn as filled circles! to
be finally trapped by the bare surface of the substrate.
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DPN results from which the radius is determined. Also
drawn in the figure is the fit obtained by approximating the
circle area growth as a linear function of contact time.13 The
quality of fit tells us that the number of ink molecules depos-
ited per unit time is well represented by a constant,n, for the
experimental time scale. Assuming the density of ODT on
the gold surface to be the monolayer density of ODT on
Au~111! ~approximately 1/25 Å2), we getn.4.23105 s21.
This constancy in ink flux is also adopted in our simulation.
In simulation, various deposition rates relative to the diffu-
sion time scale,n* 5nDt, are studied (n* is the number of
molecules deposited per time step!. For a slowly depositing
tip, n* ,1, one ink molecule is deposited for every 1/n*
time step (n* is chosen to give an integer value for 1/n* ).
For a fast deposition case,n* .1, for every time stepn*
molecules are deposited. To do so, for a given lattice position
of the tip, n* 21 nearest neighbor sites of the position are
selected. Thenn* ink molecules are given their initial posi-
tions at the tip position and itsn* 21 nearest neighbor posi-
tions. If the initial lattice position of an ink molecule depos-
ited is unoccupied by other molecules, it is trapped.
Otherwise, the molecule is made to execute walking until it
is finally trapped by a site previously unoccupied.

III. A CONTINUUM THEORY FOR THE GROWTH
OF CIRCLES

For a tip fixed in position, the ink diffusion is isotropic,
giving ~filled! circles on the surface. Assuming cylindrical
symmetry of diffusion and treating the position of ink mol-
ecule as continuous variable, we can derive a simple analytic
theory for the radial growth of circles. Suppose at timet, the
number density at distancer from the tip is given byP(r ,t),
where*2prP(r ,t)dr is the total number of molecules de-
posited until timet. As mentioned in the Introduction, our
picture of ink diffusion is that molecules cannot move on the
bare surface but can diffuse through the region already cov-
ered by other molecules. How the periphery of a circle with
radius R(t) varies in time has been known as a moving
boundary problem.11

Specifically, for a given periphery,R(t), we solve the
diffusion equation for the number density within (r ,R) and
outside (r .R) the periphery with different diffusion con-
stantsD ~finite! andD8(→0), respectively. At the periphery,
r 5R, the number density is taken to be the monolayer den-
sity r, and the density flux must be continuous,

P~R,t !5P8~R,t !5r,

D
]P

]r
5D8

]P8

]r
, ~3.1!

whereP(r ,t) and P8(r ,t) are the densities within and out-
side the periphery, respectively.

This kind of boundary growth has been solved for vari-
ous geometries of boundary including spheres,14,15

cylinders,15 ellipsoids.16–19The derivation of the solution for
our particular problem closely follows Carslaw and Jaeger,12

but is presented here for completeness.P(r ,t) and P8(r ,t)
~Ref. 12! both are given by the exponential integral functions
Ei(2r 2/4Dt) and Ei(2r 2/4D8t), respectively.20 In order
for the first boundary condition in Eq.~3.1! to be met for all
t, R(t) must take the form

R~ t !25l24Dt. ~3.2!

Assuming a source depositingn ink molecules per unit time,
we impose a constant flux,n, at the origin,

22prD
]P

]r U
r→0

5n. ~3.3!

Then the number densities inside and outside the boundary
are given by

P~r ,t !5r2
n

4pD
@Ei~2r 2/4Dt !2Ei~2l2!#, ~3.4!

and

P8~r ,t !5
r

Ei~2l2D/D8!
Ei~2r 2/4D8t !. ~3.5!

Due to the continuity of the flux atR, Eq. ~3.1!, l2 should
satisfy

2
n

4p
e2l2

5D8r
e2l2D/D8

Ei~2l2D/D8!
. ~3.6!

FIG. 2. Circle radius vs contact time of the tip for ODT on a gold surface
@10 nm thick polycrystalline gold surface prepared on top of single crystal-
line Si~100! wafers coated with 5 nm of Ti#. Each circle~monolayer thick
ODT! in the inset was formed by putting an AFM tip coated with ODT in
contact with the surface for a certain time specified as contact time. The
experimental circle radii are estimated from the AFM image~inset! taken
after chemically etching the ODT covered Au/Ti/Si substrate. The circle
areas covered with ODT survive the etching. See Ref. 6 for more details.
The fit in the figure is obtained by fitting the experimental circle area to a
linear function of contact time,Ai5a1bt i , whereAi and t i are the area
and contact time for each data point, respectively. The average deviation of
9 data points from the fit, defined as (1/9)( i 51

9 u(Ai2a2bt i)/Ai u, is found
to be 0.12.
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Finally taking the limitD8→0 and using the asymptotic ex-
pansion ofEi(2x) for largex, Ei(2x).2e2x/x, the above
equation simplifies to

e2l2
5

4D

~n/pr!
l2. ~3.7!

Equations~3.2!, ~3.4!, and ~3.7! form the central results of
the continuum theory.

The solution forR(t)2, Eq. ~3.2!, together with Eq.~3.7!
clearly shows how the circle growth is related to the deposi-
tion rate,n, and the diffusion constant,D. Note, in Eq.~3.7!,
4D is the time growth rate of distance squared due to simple
~without trapping! diffusion andn/pr is the growth rate due
to deposition when the diffusion takes place instantaneously
~diffusion constant infinity!. l2 is determined by relative
magnitude of those two rates. Two limiting cases of the ra-
dial growth can be considered. To do so, we first take the
logarithm of Eq.~3.7!,

2l22 ln l25 lnF 4D

~n/pr!G . ~3.8!

In the slow deposition limit (n/pr!4D), l2 gets very small
so thatl2 in Eq. ~3.8! can be neglected to give

R~ t !25
n

pr
t. ~3.9!

Then the radial growth is solely determined by the deposition
rate. On the other hand, in the fast deposition limit (n/pr
@4D), l2 gets large and now lnl2 in Eq. ~3.8! becomes
negligible compared tol2, leading to

R~ t !254Dt ln@~n/pr!/4D#. ~3.10!

IV. RESULTS

A. Properties of circles

Our analysis starts with patterns generated by a tip fixed
in position on the lattice~simulating DPN result shown in the
inset of Fig. 2!. Figure 3 shows eight snapshots of circles for
slow, lnn*522 ~top!, and fast, lnn*52 ~bottom!, deposition
cases. To produce the figure, the total time taken for all the
molecules to be trapped by lattice sites has been divided into
eight equally spaced time intervals. Then in the ascending
order of their trapping times, the site positions at which mol-
ecules are trapped are drawn as circles, filled circles, squares,
filled squares, diamonds, filled diamonds, triangles, and filled
triangles. The circle growth is largely isotropic, but, due to
the diffusional nature of self-assembly, the periphery is
rather noisy. For slow deposition~top!, the periphery propa-
gates step by step in time. In contrast, the periphery growth
for fast deposition~bottom! is confined to one fourth of the
total time, giving a negligible growth at later times.

Let us now focus on the dynamic behavior of the aver-
age radius of circle,R. In Fig. 4 is shown the growth of the
radius squared,R(t)2, of the periphery from deposition of
2500 ink molecules with various deposition rates
(ln n*523, 22, 21, 0, 1, 2, 3!. The growth gets faster with
increasing deposition rate. Two distinct phases of the growth
can be recognized: a linear growth ofR(t)2 while the tip is

in contact with the surface, and thereafter a much slower
increase in the radius that eventually stops when all the mol-
ecules are adsorbed. Regardless of the deposition rate, the
final radius converges to the same value at long times. For
slow deposition cases~top!, R2 deviates from the linear in-
crease in time only at the end of the whole process. In con-
trast, the deviation for the fast deposition~bottom! starts
relatively earlier in time. We also checked the increase in the
circle size after the tip is removed. From the radius at the end
of tip contact and the final radius of circle, we calculated the
area increase of circle after the contact. As expected, the
increase is negligible for slow deposition, but for fast depo-
sition the increase is significant~77% increase in area for
ln n*53!.

Our simulation shows that the circle size,R2, grows lin-
early in time during the deposition period. This is exactly
what is predicted by the continuum theory developed in Sec.
III. For a quantitative comparison,R(t)2 from the simulation
is fitted to a linear function oft using chi-square-fitting.13 In
the top of Fig. 5, the radial growth rate,R(t)2/4Dt, from
simulation is compared with that of the analytic theory, Eq.
~3.2!, for various deposition rates, lnn* . The analytic theory
agrees very well with simulation regardless of deposition
rates. Note also that the simulation without the excluded vol-
ume effect closely matches the full simulation and the ana-
lytic theory. Thus the excluded volume effect is hardly ob-
servable in our simulation, and the sophisticated procedure to
account for such effect seems unnecessary. In the bottom of
Fig. 5, the full analytic theory is compared with its slow and
fast deposition limit expressions, Eqs.~3.9! and ~3.10!. The
slow deposition limit is quantitative for lnn*525,24,
23,22,21, but the fast deposition limit is not realized for
the deposition rates considered@for the fast deposition limit
to be valid, ln(R2/4Dt) should be negligible compared to
R2/4Dt, see Sec. III#.

Our random walk results, like the DPN experimental re-
sults ~Fig. 2!, do not have the perfect cylindrical symmetry
assumed in the analytic theory. Therefore, as we have already
seen in Fig. 3, the periphery of the circle fluctuates from a
perfect circle. This fuzziness of the circle boundary pertains
to the quality of circles generated by DPN, and thus is of
practical importance. The first step in quantifying the noncir-
cular property is calculating the average,mR , and standard
deviation,sR , of the distances of the peripheral points~de-
fined as points with less than four nearest neighbors!. The
next, not so obvious, step is to note thatmR /sR is a good
measure of circularity. This size-independent measure grows
as a digital object gets more circular~infinity for a circle!.21

Moreover, for anN-side polygon whose peripheral points are
uniformly distributed, it has been found that21

N.1.3869~mR /sR!0.4721. ~4.1!

We adoptN defined by Eq.~4.1! as a measure of circularity.
Varying the number of ink molecules deposited and the
deposition rates, we first calculatedmR andsR and averaged
them over 30 independent runs to get their average values.
The average standard deviation was found to be independent
of the deposition rate, and its magnitude never exceeded one
lattice spacing~ranging from 0.76 to 0.92 lattice spacings!.
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This small deviation in radius regardless of the deposition
rates results from the trapping property of our lattice sites,
and contrasts with that of a normal, fluidlike diffusion where
molecules can travel everywhere without being trapped. We
plot in Fig. 6 the average of circularity~from 30 runs!, Eq.
~4.1!, as a function of number of molecules deposited and
deposition rate, lnn* . Peripheries get more circular with in-
creasing the number of molecules~thus increasing the size of
circle!. For a given number of molecules deposited, the cir-
cularity is fairly constant regardless of deposition rate.

B. Patterns generated by a moving tip

For a tip fixed in space, the results in Sec. IV A show
that, by and large, the final structure~characterized by circu-
larity! of the circle generated by DPN seems to be insensitive
to whether the ink is deposited fast or slow relative to diffu-
sion time scale of molecules. To generate lines or various
structures other than circles in DPN however, the tip has to
move across the surface. In this section, we study the effects
of the speed of the moving tip and deposition rate on various
patterns.

FIG. 3. ~Color! Snapshots of circles generated by a tip fixed in position~at x50,y50 in the figure!. We divided the time taken for all the molecules to be
trapped into eight equal intervals. In the ascending order of their trapping times, molecules are drawn as circles, filled circles, squares, filled squares,
diamonds, filled diamonds, triangles, and filled triangles. Slow, lnn*522 ~top!, and a fast, lnn*52 ~bottom!, deposition cases are plotted for deposition of
2500 ink molecules.
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As a starting point, we checked line segments generated
by various tip speeds for a given deposition rate,n* 51. For
this deposition rate, we could draw a perfect line by depos-
iting one molecule at each lattice site (v* 51). As we move
the tip slower, lnv*522 and21, we observed broader and
fuzzy lines. On the other hand, increasing the tip scan rate,
ln v*52 and 1, yielded lines which are no longer continuous
and look like separated dots aligned straight. A similar trend
can be found for more sophisticated patterns such as letters.
In Fig. 7~A!, for a fixed deposition rate, lnn*51, letters N,
U, and1 are drawn by varying the tip speed as lnv*522
~top!, 0 ~middle!, 2 ~bottom!. The N and U are drawn by
moving the tip without detaching the tip from the lattice until
the tip reaches the final lattice points of the letters, but the1
is written by first drawing the horizontal line, then detaching
the tip and finally drawing the vertical line. Increasing the tip
scan rate from lnv*522 to 0 makes the line widths of let-
ters narrower, but further increasing the tip speed makes the
points in the letters isolated. Note also that, for the slow tip
~top!, blurring of the letter1 is more prominent at the cross-
ing point of the vertical and horizontal lines. At the crossing,
molecules have to be deposited on top of the molecules pre-
viously deposited. Thus, molecules dropped later must dif-
fuse over the layer of molecules previously deposited, result-
ing in the extra blurring seen in the figure. For a qualitative

comparison, we show in Fig. 7~B! the lateral force micro-
scope image of 16-mercaptohexadecanoic acid~MHA !
monolayer generated by DPN on Au~111! surface. What hap-
pens if we fix the tip scan rate and vary the deposition rate?
By fixing the tip scan speed to lnv*521, we checked how
the letters in Fig. 7~A! change for various deposition rates,
ln n*52, 0, 22. A slower deposition yielded a narrower
linewidth in letters, and we observed patterns nearly identical
to those in Fig. 7~A!.

Consider a tip scanning a line of certain length as many
times as needed to deposit a given amount of molecules. One
can then imagine slowly scanning the line once or fast scan-
ning the line over and over again. We here study the effects
of tip scan speed and deposition rate on the linewidth; a tip is
made to scan a straight line with a length of 31 lattice points
until it drops a total of 12 400 ink molecules. The number of

FIG. 4. Radial growth of peripheral points of circles. The radius squared of
the periphery,R(t)2, is plotted as a function of timet relative to diffusion
time scale,Dt. Slow, lnn*523,22,21 ~top!, and fast, lnn*53,2,1 ~bot-
tom!, deposition cases are plotted separately. The dashed lines drawn in both
figures are forn* 51. The radius grows faster with increasing the deposition
rate. Total of 2500 ink molecules are deposited, and 10 independent simu-
lations are run to get the average ofR(t)2.

FIG. 5. Radius growth rate in time for various deposition rates, lnn* . In the
top, numerical simulation with or without excluded volume effect is com-
pared to the analytic theory. Drawn in the bottom are the full analytic theory
and its limiting expressions in the slow and fast deposition limits. Simula-
tion results are obtained as follows: We first calculated the distances of
peripheral points for each time stept i for deposition of 7000 molecules, and
made 20 independent runs to get the average circle radius for each time step,
R(t i). Then the average radius is fitted asR(t i)

25a1bti ~see Ref. 13! and
the radial growth rate in the figure is obtained asb/4D. The average devia-
tion of the fit, defined as (1/M )( i 51

M u(R(t i)
22a2bti)/R(t i)

2u (M5number
of data points!, was less than 0.044 for all the deposition rates considered.
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molecules is chosen so that the slowest tip (lnv*523) with
the highest deposition rate (lnn*53) considered scans the
line just once. The tips with othern* andv* then scan the
line repeatedly until they use up the same number of ink
molecules. The half linewidth is defined as the average dis-
tance of peripheral points~again defined as points with less
than four nearest neighbors! perpendicular to the scanning
line. In Fig. 8, the widths of lines averaged over 30 indepen-
dent runs are plotted for varying deposition rate and tip scan
speed. Increasing the tip scan rate yields a reduced line
width, but the actual variation is very small. To see how
fuzzy the periphery of the line is, we examined the standard
deviation of the distances of peripheral points~perpendicular
to the line of scan! from the average half linewidth. We
found that the average deviation is about one lattice spacing,
and independent ofv* andn* .

Ink molecules in our model are irreversibly trapped by
lattice sites and thus cannot diffuse on the bare surface. This
view stresses the strong chemical bond formed between mol-
ecules and the surface. In real experiments however, a small
but finite mobility of molecules on the bare surface is ex-
pected due to the finite strength of chemical bonding. We
here examine how the patterns change as we allow for dif-
fusion on the bare surface. In Fig. 9, we plot the circles
generated when molecules diffuse on the bare surface with
various diffusivities. We have considered the cases where the
bare surface diffusion is 10 to 1000 times slower than that on
the monolayer of ink molecules. An immediate consequence
of the bare surface diffusion is that any pattern deposited will

FIG. 6. ~Color! The circularity as a function of deposition rate, lnn* , and
the number of molecules deposited. The circularity, defined in Eq.~4.1!, is
the effective number of sides of a polygon resembling the periphery of
circle. For a perfect circle, the circularity is infinity. 30 independent runs
were used for calculating each circularity.

FIG. 7. ~A! Letters generated by using various tip scan rates for a fixed
deposition rate. For a deposition rate, lnn*51, letters are drawn by using
different tip scan rates, lnv*522 ~top!, 0 ~middle!, 2 ~bottom!. ~B! An
AFM image of letters prepared by DPN experiment on Au~111! surface. The
letters are made of monolayer thick 16-mercaptohexadecanoic acid~MHA !
deposited by using tip scan speed 2 nm/s at relative humidity 23%~at room
temperature and under atmospheric condition!. The lines in the image are
about 15 nm wide. See Ref. 2 for more details.

FIG. 8. ~Color! Average half linewidth for lines generated by tips with
various deposition rates, lnn* , and tip scan speeds, lnv* . The linewidth in
the figure is given in terms of number of lattice spacings. The tip scanned a
straight line with a length of 31 lattice points, and 12 400 ink molecules are
deposited. The average was taken over 30 independent runs for eachn*
andv* .
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eventually diffuse over the entire surface, yielding no distinct
patterns at very long times. Drawn in the figure are snapshots
taken at the time when a stable circle forms in the case where
no bare surface diffusion is allowed. As we increase the bare
surface diffusivity, circles get more and more diffuse in
shape. For the bare surface diffusion 10 times slower than
that over the monolayer, the circle structure is almost invis-
ible. A similar trend can be found for letters drawn in Fig. 10.
Using the same tip speed and deposition rate as used to draw
the top panel of Fig. 7~A!, the bare surface diffusivity rela-
tive to the diffusivity over monolayer is varied as 1/1000
~top!, 1/100 ~middle!, and 1/10~bottom!. Letters get more
ill-defined as the bare surface diffusivity is enhanced.

C. Connection to experiments

We have studied patterns formed in DPN under a variety
of conditions specified by the tip speed and deposition rate.
Every quantity calculated in the simulation is given in terms
of the diffusion time scale,Dt, given by Eq.~2.1! and the
grid length of the square lattice,l. For the purpose of extract-
ing the qualitative behavior of DPN, our previous analysis is
enough. A question that arises is which regime in our simu-
lation corresponds to a real DPN experiment using a specific
ink molecule and substrate surface? To make this connection
with experiment, we need to identify the basic quantities in
our simulation,Dt andl. The grid length,l, in our simulation
is taken to be the distance between adsorbed ink molecules,
and can be easily identified once the self-assembled mono-
layer structure is known. With a known grid length, the dif-
fusion time scale can be drawn from the diffusion constant,

D, which is related toDt by Eq. ~2.1!. So far, DPN experi-
ments have not measured the diffusion constant, and it is not
so clear how to measure it~remember the diffusion constant
needed is not for diffusion over a bare surface but rather for
diffusion over a monolayer of ink molecules!.

We here take a specific example, ODT on Au~111!, to
present our scheme, but the procedure described is generally
applicable. Since ODT forms a hexagonal monolayer with a
spacing 5 Å on the Au~111! surface,4,22 we take our grid
length asl 55 Å. With this grid length, the upper limit of the
diffusion constant can be estimated; for our diffusion picture
to make sense at all, the diffusion time step must be much
larger than the velocity relaxation time. Assuming thermal
equilibrium in the velocity distribution, we get23

Dt@mD/kBT, ~4.2!

wherem, T, andkB are the mass of ODT molecule~54.76
310225 kg), temperature, and Boltzmann’s constant, re-
spectively. At room temperatureT5298 K ~which is a nor-
mal condition for DPN!, Eqs.~2.1! and ~4.2! give us

D!2.3231024 cm2 s21, Dt@2.7 ps. ~4.3!

Another estimate ofD can be extracted from the diffu-
sivity of eicosanethiol obtained from fitting patterns in mi-
crocontact printing. The reported diffusivity7 is that of the
thiol diffusing on a stamp, polydimethylsiloxane~PDMS!,

FIG. 9. Circles generated by using various diffusivities on the bare surface.
Clockwise starting from the top left, we plot circles generated for bare
surface diffusions which are infinitely~no diffusion!, 1000, 100, and 10
times slower than the diffusion on the monolayer of molecules. Total of
2500 molecules are deposited, and shown in the figure are snapshots of
circles taken at the time when all the molecules are trapped for the case
where no bare surface diffusion is allowed. FIG. 10. Letters drawn by allowing the bare surface diffusion. We used the

same tip scan speed and deposition rate (lnv*522 and lnn*51) as used to
generate the top panel of Fig. 7~A!. The bare surface diffusivity is varied as
1000~top!, 100~middle!, and 10~bottom! times smaller than the diffusivity
on the monolayer of molecules. For each letter, a snapshot is taken at the
time when all the ink molecules deposited are trapped in the case of no bare
surface diffusion.
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which is taken to be identical to that of eicosanethiol diffus-
ing over a monolayer of the thiol. Using the diffusivity,D
5731028 cm2 s21, along with the deposition rate,n, and
the lattice spacingl already calculated for ODT on Au~111!,
we get the diffusion time scale ofDt58.9 ns. Assuming a
typical tip scan speed,v51 mm/s, we get lnn*525.6 and
ln v*5210.9, which corresponds to a slow deposition and
tip scan relative to the diffusion time scale.

V. SUMMARY AND CONCLUSION

In this paper, we have presented the first theoretical
study on the self-assembly of ink molecules in DPN. The
dynamics of the self-assembly has been modeled as a two
dimensional random walk on a square lattice. The flow of ink
from the tip is approximated as a constant flux of molecules.
To mimic the chemisorption of ink molecules to the sub-
strate, it is assumed that every site on the lattice traps a
molecule, and molecules diffuse only over the region previ-
ously covered by other molecules. It is shown that the
growth of patterns can be viewed as a phase growth with a
source, and the circle growth in DPN reduces to a well-
known problem in theories of diffusional phase growth. An
analytic solution for the circle growth has been presented and
shown to agree well with simulation.

Varying the magnitudes of deposition rate and tip scan
speed relative to the diffusion time scale of ink molecules,
we have studied the patterns generated by DPN. The periph-
eries of circles and lines have been characterized by circu-
larity and linewidth, respectively. For a fixed tip, the result-
ing circles are insensitive to the deposition rate as long as the
same number of molecules are deposited, but increasing the
total number of molecules yielded more circular patterns.
Patterns created by a moving tip significantly depended on
the tip speed and deposition rate. Although fast scan or slow
deposition generally enhances the resolution of patterns, fur-
ther increasing scan rate~or decreasing deposition rate! could
result in disconnected patterns. It is actually difficult to ana-
lyze more complex patterns such as blurred crossing points
or rounded corners of letters just in terms of linewidth or
circularity. Then it would be necessary to look at another
aspect of the patterns such as connectivity and convexity.24

To apply our results to a specific experiment, knowledge of
the diffusion constant is crucial. We have considered possible
values whichD may have. These indicate that deposition and
scanning are slow compared to diffusion, but this estimate is
very uncertain. Fortunately, many of the results are relatively
insensitive to the deposition rate or scan rate, so this uncer-
tainty is not crucial to the conclusions of this work.

Even for the perfect crystalline surface studied here,
DPN patterns have a random periphery due to the diffusional
nature of self assembly. In addition to this diffusional blur-
ring of patterns, the surface itself might be corrugated, poly-

crystalline, anisotropic and have defects in binding sites due
to contamination. These extra factors are expected to further
deteriorate the quality of DPN results. It would be interesting
to study exactly how the quality of substrate plays a role in
the resolution of DPN. Lastly, we hope to understand the
microscopic details of ink deposition from the tip to the sub-
strate. Is water condensation, if it forms at all, really trigger-
ing the ink transport from the tip? What does the water me-
niscus look like and what controls the narrowness of the ink
flow? Will the ink flux be constant in time on a molecular
diffusion time scale? These are the questions we hope to
answer in the near future.
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