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Dephasing of individual rotational states in liquids
Joonkyung Jang and Richard M. Stratta)

Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 6 July 2000; accepted 29 September 2000!

We continue our previous examination of the fate of individual rotational quantum states in liquids
by an analysis of the rotational Raman spectrum of solutions of H2 and D2 in Ar( l ) . Rewriting the
conventional Kubo treatment allows us to show how the character of the spectrum is an immediate
consequence of the rotational friction felt by the solutes. On evaluating that friction via classical
molecular dynamics we find that the spectra should consist of well-resolved, homogeneously
broadened lines, reflecting the picosecond-long dephasing times. We find, in particular, that the
rotational states in H2 should relax predominantly by pure dephasing, whereas D2, with its smaller
rotational quanta, should exhibit significant energy relaxation as well. The linewidths predicted for
H2 are nicely in accord with those computed by more involved nonadiabatic, mixed
quantum-classical simulations. ©2000 American Institute of Physics.@S0021-9606~00!51448-2#

I. INTRODUCTION

That nearly free-rotor rotational quantum states can exist
in ordinary classical liquids, at least in some form, is clear.
Not only do a number of the dissolved hydrides exhibit dis-
crete rotational lines in their spectra, the lines often occur at
frequencies remarkably close to those of their gas-phase
counterparts.1–11 The rotational Raman spectra of H2 and D2

in water,5,7,9and of H2 in supercritical CO2,
10 make for some

of the most intriguing examples, but HCl, DCl, and HF so-
lutions in SF6

1–3 also display much the same behavior.
The question we want to pose is the following: what

liquid-state processes account for the relaxation of these ro-
tational quantum states? In more concrete terms, we would
like to understand how the rotational Raman lines end up
being broadened by a liquid environment so much more than
they end up being shifted. The prediction of various kinds of
pure rotational spectra in liquids is, of course, a time-
honored problem with considerable attention already having
been devoted to both far-infrared and rotational Raman
spectra.7–9,12–21In some cases these calculations are simply
direct simulations of the appropriate linear-response correla-
tion functions carried out with varying levels of sophistica-
tion in how the quantum and classical parts of the problem
are mixed.7–9,12,13 Other calculations, however, attempt to
understand the ingredients in the spectra through formal line
shape theories.7,14–21Such efforts can be quite informative in
allowing us to discriminate between homogeneous~dynami-
cal! and inhomogeneous ~static! sources of line
broadening22–25 and in helping us partition the former into
energy and phase relaxation components.23–25At the heart of
all of these kinds of calculations, though, is a connection
between the well-established formal theories and the key mi-
croscopic features of the liquid’s dynamics—and it is here
where much of the previous theoretical work on the spectros-
copy of hydrides has had difficulties.

Some of the interpretation of the line broadening has
been in terms of formal stochastic or quasiharmonic models,

approaches with only tenuous connections with the molecu-
lar details of liquid dynamics.17–21 Other, more molecularly
oriented efforts have focused on the liquid’s density autocor-
relation functions4,14,15—an approach that is correct but
largely tautological.All of the liquid’s motion leads to den-
sity fluctuations; the interesting question is which are the key
fluctuations in the immediate vicinity of the solute. In fact,
the literature of this field, viewed quite generally, is replete
with references to the generic power spectra of liquids,16,26

but there are few pointers as to which of the many different
kinds of power spectra are best at capturing the essential
solvent dynamics involved in molecular reorientation.

What we have emphasized in our own recent work27–29

is that the critical quantity necessary to understand rotational
dynamics in liquids is therotational friction, which for a
linear solute is given quite accurately by

h~ t !5^NW ~ t !"NW ~0!&/~2kBT!, ~1.1!

with NW the torque the solute would feel if it were held at a
fixed orientation,T the temperature, andkB Boltzmann’s
constant, and where the brackets denote an equilibrium av-
erage over all of the other degrees of freedom of the solution
besides the orientation. Our first efforts showed that for the
ordinary classical rotation that most molecules undergo in
solution, this function was indeed the relevant friction in the
classical sense of being the time-delayed drag on the angular
velocity.27 Instantaneous-normal-mode calculations of this
h(t) then allowed us to uncover the detailed molecular ori-
gins of this kind of, fairly standard, rotational relaxation.27,28

Subsequent work showed, however, that this same friction
was also the key ingredient in understanding the energy re-
laxation of quantized rotational states in liquids.29 The rates
of energy relaxation turned out to obey a rotational Landau–
Teller relation: the transition rate between rotational states in
a liquid was shown to be proportional to the value of~the
real part of! the classical frequency-dependent friction,

ĥR~v!5E
0

`

dt cosvth~ t !, ~1.2!
a!Electronic mail: richard–stratt@brown.edu
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evaluated at the frequency of the rotational transition. This
particular power spectrum of the liquid—and therefore the
limited band of frequencies available to the solution—was
thus seen to be one of the main ingredients in determining
the lifetime of rotational quantum states.29

Still missing from our analysis, though, is any measure
of the time period over which quantized rotational motion
should retain its phase memory—its pure dephasing time.30

Since both energy and phase relaxation can, in principle,
contribute to spectral line shapes,23–25we need to address the
latter before we can begin to understand the actual spectra of
hydrides. What we shall do in this paper is to show how a
conventional Kubo treatment22,30–32of rotational Raman line
shapes brings in this same classical rotational friction we
have been discussing. The fact that pure dephasing ends up
depending on the zero-frequency frictionĥR(0) ~much as it
does in vibrational spectroscopy!33–36 means that our
instantaneous-normal-mode methods cannot be used
here,27–29,37but direct evaluation by classical molecular dy-
namics simulation is simple enough. With the aid of such
simulations, we show how this formalism can be used to
predict and study the spectra of H2 and D2 dissolved in Ar( l ) .

Since there have been few rotational Raman experiments
published on these systems to date,38 the most pertinent com-
parisons for this work certainly come from the Xiao and
Coker seminal mixed quantum mechanical and classical
simulation of the rotational Raman spectra of H2 in Ar( l ) .8

While those authors neglected the possibility of transitions
between distinct total angular momentum statesl ~an issue
we shall return to later!, they nonetheless successfully simu-
lated the interconversion among the different angular mo-
mentum componentsm by viewing the process as a sequence
of nonadiabatic transitions induced by the liquid. We will
want to see if we find qualitatively, or even quantitatively,
similar spectra and, in particular, if we find the same kind of
nonmonotonic dependence of linewidth onl that Xiao and
Coker do. More generally, we shall want to consider the
extent to which such elaborate mixed quantum-classical
simulations are really necessary to understand the behavior
of a quantal solute in a classical liquid.39

The remainder of this paper will be organized as fol-
lows: In Sec. II we will summarize the molecular-level Kubo
theory of rotational Raman spectroscopy and show how this
theory can be recast into a form in which the dynamics of the
liquid enters only through the rotational friction. We then
turn to the specific cases of H2 and D2 in Ar( l ) . Our choices
for potentials and calculational approaches are detailed in
Sec. III, and our numerical results are presented in Sec. IV.
We conclude in Sec. V with a brief discussion of our find-
ings.

II. ROTATIONAL RAMAN SPECTROSCOPY AND
ROTATIONAL FRICTION

A. Microscopic Kubo theory

Within linear response theory, the rotational Raman
spectrum of a molecule in a liquid can be written as the
Fourier transform of the anisotropic polarizability autocorre-
lation function,7,13

I ~v!5
1

2p E
2`

`

dt e2 ivtC~ t !, ~2.1!

C~ t !5 (
q522

2

^aq~0!aq
†~ t !&, ~2.2!

with aq the qth component of the second rank spherical
polarizability tensor andaq

†(t)5(21)qa2q(t) understood to
be the adjoint of the polarizability operator in the Heisenberg
representation,

aq
†~ t !5eitH /\aq

†e2 i tH /\ ~2.3!

~H being the solution’s Hamiltonian!.
For the weakly coupled linear solute such as H2, it is

convenient to separate the anisotropic part of the solute–
solvent interactionV from the rest of the HamiltonianH0 ,

H5H01V~u,f,R!, ~2.4a!

H05H rot~ u̇,ḟ,u,f!1HB~Ṙ,R!, ~2.4b!

with u and f defining the orientation of the solute in the
laboratory frame and the remaining coordinates, the center-
of-mass coordinate of the soluter0 and the coordinates of the
N solvent molecules,R5(r0 ,...,rN) comprising the bath de-
grees of freedom. Within this framework, the uncoupled ref-
erence HamiltonianH0 includes bothH rot , the rotational
Hamiltonian of the isolated solute, andHB , the reference
part of the bath Hamiltonian. Note that the latter contains not
only the solvent–solvent interaction but also the isotropic
part of the solute–solvent potential.

If the rotor–bath coupling is sufficiently weak~as it is
here!,29 it makes sense to work in aYlm basis, the basis of
eigenstates ofH rot , which makes it possible to divide the
spectrum into contributions from eachl→ l 8 transition

C~ t !5(
l ,l 8

Cll 8~ t !, ~2.5!

Cll 8~ t !5
Pl

2l 11 (
q522

2

(
m52 l

l

(
m852 l 8

l 8

^^ lmuaq~0!u l 8m8&

3^ l 8m8uaq
†~ t !u lm&&B , ~2.6!

I l l 8~v!5
1

2p E
2`

`

dt e2 ivtCll 8~ t !, I ~v!5(
l ,l 8

I l l 8~v!,

~2.7!

where thê &B brackets denote an equilibrium average over
the bath degrees of freedom andPl is the equilibrium popu-
lation of rotor states with the total angular momentuml.40,41

We can now take advantage of some standard operator
manipulations.22,30,32By writing the anisotropic potential in
the interaction representation

V̄~ t !5e2 i tH 0 /\VeitH 0 /\, ~2.8!

and introducing the notation that for any operatorsA andB

AxB5@A,B#,

we can express the time-dependent polarizability formally as
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aq
1~ t !5eitH 0 /\ exp1S i

\ E
0

t

dt V̄~t!xDaq
†e2 i tH 0 /\, ~2.9!

where the notation exp1 refers to a time ordered
exponential.22,30 But Eq. ~2.9! means that the polarizability
autocorrelation function, Eq.~2.6!, can be rewritten as a
product of a sinusoidal term oscillating at the frequency of
the isolated-molecule transition

V l l 85~El2El 8!/\, ~2.10!

and an average liquid-state modulation factor

Cll 8~ t !5Cll 8~0!e2 iV l l 8tK exp1S i

\ E
0

t

dt V̄~t!xD L
l l 8

,

~2.11!

with the brackets here defined so that for any operatorX:

^X& l l 85
(q(m,m8^^ lmuaqu l 8m8&^ l 8m8uXaq

†u lm&&B

(q(m,m8^^ lmuaqu l 8m8&^ l 8m8uaq
†u lm&&B

.

Equation~2.11! is in precisely the form appropriate for a
standard Kubo expansion.22,30,32Since in an isotropic liquid
the first-order term will vanish by symmetry, we can write,
through leading order in the fluctuations of the coupling,

Cll 8~ t !5Cll 8~0!e2 iV l l 8t

3expS 2
1

\2 E
0

t

dtE
0

t

dt8^V̄~t!xV̄~t8!x& l l 8D .

~2.12!

Thus, the basic structure of the polarizability autocorrelation
function is

Cll 8~ t !5Cll 8~0!e2 iV l l 8t exp@2gll 8~ t !#, ~2.13a!

gll 8~ t !5E
0

t

dtE
0

t

dt8 Gll 8~t,t8!, ~2.13b!

with the liquid dynamics embodied in the second cumulant,

\2Gll 8~t,t8![^V̄~t!xV̄~t8!x& l l 8 . ~2.14!

We will proceed shortly with the explicit evaluation of
the Gll 8 cumulant, but it is clear what kind of terms will
result. The cumulant will have both real and imaginary com-
ponents, with the real~dephasing! terms leading to damping
and the imaginary~oscillatory! terms contributing to fre-
quency shifts. Moreover, each of these components will have
both inelastic contributions, involving net energy transfer
with the liquid, and energy-conserving, elastic, contributions.
More specifically, we find that

gll 8~ t !5E
0

t

dt
1

T2
l l 8~t!

2 i E
0

t

dt D l l 8~t!, ~2.15!

with the elastic and inelastic portions of the dephasing pro-
ducing the pure-dephasing (T2* ) and population relaxation
(T1) contributions, respectively,23–25

1

T2
l l 8~ t !

5
1

T2*
l l 8~ t !

1
1

2T1
l l 8~ t !

. ~2.16!

In much the same way, there will be elastic (D2*
l l 8) and

inelastic (D1
l l 8) contributions to the frequency shift, which

we can write as

D l l 8~ t !5D2*
l l 8~ t !1 1

2 D1
l l 8~ t !. ~2.17!

Let us turn now to the molecular origins of each of these
terms.

B. The connection with rotational friction

Our basic approach to thinking about the rotational fric-
tion within the kind of weak coupling situation presented by
the hydrides will be the same as we used previously in our
treatment of rotational energy relaxation.29 Unlike the
strongly coupled isotropic portion of the solute–solvent in-
teraction, we can safely expand theanisotropicpart of the
potential in orders of the anisotropy,

V~u,f,R!5 (
J51

`

(
K52J

J

AJK~R!YJK~u,f!,

~2.18!

AJK~R!5E
0

2p

dfE
0

p

du sinu V~u,f,R!YJK* ~u,f!,

meaning that the crucial quantities will be the correlation
functions of the expansion coefficients,42

CJ~ t !5^AJ0~ t !AJ0~0!&B ,
~2.19!

AJ0~ t ![eitH B /\AJ0e2 i tH B /\,

where~in a slight switch from our previous notation!29 this
and all of the other correlation functions in this section are
taken to be complex averages of time-dependent quantum
mechanical operators. However, the complex rotational fric-
tion, Eq.~1.1!, can also be expanded in orders of the anisot-
ropy

h~ t !5 (
J51

`

hJ~ t !, ~2.20!

enabling us to make a connection between the two~within
the weak coupling limit!29

hJ~ t !5
bJ

2kBT
CJ~ t !, ~2.21!

bJ[
J~J11!~2J11!

4p
. ~2.22!

All of the key spectroscopic quantities, Eqs.~2.16! and
~2.17!, depend on the liquid dynamics solely through the
CJ(t) correlation functions, and are therefore completely
controlled by the components of the rotational friction. The
technical details of evaluating these quantities are discussed
elsewhere,43 but we can summarize the steps easily enough.
After some angular momentum algebra we find that theGll 8
cumulant can be written as
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\2Gll 8~ t !5 (
J51

`

bJ@Rll 8~J!CJ
R~ t !1 iTll 8~J!CJ

I ~ t !#

1 (
J51

`

bJS (
LÞ l 8

Fl 8L~J!e2 iV l 8LtCJ* ~ t !

1(
LÞ l

FlL~J!eiV lL tCJ~ t !D , ~2.23!

where the superscriptsR and I denote real and imaginary
parts, and the various angular-momentum coupling coeffi-
cients are defined in terms of 3-j and 6-j symbols,44,45

Fll 8~J!5
2l 811

J~J11!
S lJl 8

000D 2

,

Tll 8~J!5Fll ~J!2Fl 8 l 8~J!,
~2.24!

Rll 8~J!5Fll ~J!1Fl 8 l 8~J!22Dll 8~J!,

Dll 8~J!5
~2l 11!~2l 811!

J~J11!
~21!J

3S lJl
000D S l 8Jl8

000 D H lJl
l 82l 8J .

The form of Eq.~2.23! makes the basic behavior clear;
while the first sum includes only elastic contributions, the
second sum brings in inelastic transitionsl, l 8→L. We can
write these inelastic terms in a somewhat more transparent
fashion, though, by introducing the complex, time-dependent
‘‘rate constants,’’

kl→L~ t !5
2

\2 (
J51

`

bJFlL~J!E
0

t

dt eiV lLtCJ~t!

5
4kBT

\2 (
J51

`

FlL~J!E
0

t

dt eiV lLthJ~t!. ~2.25!

The real part of this rate constant,kl→L
R (t), is, in fact, pre-

cisely the rate ofl→L transitions predicted by first-order
time-dependent perturbation theory as a function oft, the
time elapsed after populating a rotational statel. This expres-
sion may be a bit unfamiliar looking because it contains the
full range of dynamics, starting from the earliest transients.
However, the long-time limit is quite familiar; the
asymptotic rate constant is nothing more than our previous
Fermi’s Golden rule result29 for the steady-state rate of popu-
lation relaxation, written in terms of the Fourier transform of
the friction, Eq.~1.2!,

kl→L5 lim
t→`

kl→L
R ~ t !

5
4kBT

\2 (
J51

`

FlL~J!

3E
0

`

dt@cosV lLt hJ
R~t!2sinV lLt hJ

1~t!#

5
8kBT

\2

1

11exp~2\V lL 8b! (
J51

`

FlL~J!ĥJ
R~V lL 8!.

~2.26!

Hereb5(kBT)21 and we have made use of the identity46,47

that for any quantum correlation functionC(t)
5^A(t)A(0)&,

E
0

`

dt sinvtCI~ t !52tanhS \vb

2 D E
0

`

dt cosvtCR~ t !.

On substituting our full, time-dependent, complex rate
constants, Eq.~2.25!, into Eq.~2.23!, and substituting that, in
turn, into Eq. ~2.13b! we find that we do indeed produce
expressions of the form of Eqs.~2.15!–~2.17!. The inelastic
contributions to the dephasing and to the frequency shift are
simply given by sums of these rate constants

1

T1
l l 8~ t !

5(
LÞ l

kl→L
R ~ t !1 (

LÞ l 8
kl 8→L

R
~ t !, ~2.27!

D1
l l 8~ t !5 (

LÞ l 8
kl 8→L

I
~ t !2(

LÞ l
kl→L

I ~ t !. ~2.28!

The elastic contributions, by contrast, stem from~what are
essentially! the zero-frequency Fourier transforms of the fric-
tion

1

T2*
l l 8~ t !

5
2kBT

\2 (
J51

`

Rll 8~J!E
0

t

dt hJ
R~t!, ~2.29!

D2*
l l 8~ t !52

2kBT

\2 (
J51

`

Tll 8~J!E
0

t

dt hJ
I ~t!. ~2.30!

Equations ~2.25! and ~2.27!–~2.30!, together with Eqs.
~2.13a! and ~2.15!–~2.17!, constitute the principal results of
this paper. If nothing else, these expressions make quite evi-
dent how direct the connections are between the rotational
Raman spectrum and the~anisotropy-resolved! rotational
friction. More than that, though, they indicate precisely how
the friction enters the various features of the Raman line
shapes.

C. Line shapes and lifetimes

Though the details are specific to weakly coupled rota-
tional states of a linear molecule dissolved in a liquid, the
results obtained in the previous sections are of the classic
Kubo form. As such, we know the basic range of possible
outcomes.22 As always, the critical comparison is between
the steady-state dephasing timeT2[T2(`) and the decay
time, tc , of some relevant correlation function. For H2 and
D2, in which a single value ofJ dominates, what we need to
look at is the decay time for theJth-order rotational friction,
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tc~J!5E
0

`

dt
hJ~ t !

hJ~0!
. ~2.31!

Should this friction decay very quickly for somel→ l 8

transition @tc(J)!T2
l l 8#, the spectral peak would be in the

homogeneousbroadening limit: the polarizability autocorre-
lation function, Eqs.~2.13a! and ~2.15!, could be written
with both the time-dependent dephasing rates and the time-
dependent peak shifts replaced by their steady-state values

@1/T2
l l 8 andD l l 8[D l l 8(`), respectively#,

Cll 8~ t !5Cll 8~0!e2 i ~V l l 82D l l 8!te2tY T2
l l 8

, ~2.32!

rendering the peak itself, Eq.~2.7!, perfectly Lorentzian,48

I l l 8~v!5
Cll 8~0!

p

1/T2
l l 8

~1/T2
l l 8!21~v1V l l 82D l l 8!

2
, ~2.33!

with a half-width at half-maximum~HWHM! of 1/T2
l l 8 .

Were we in the opposite limit, with a very slowly decay-

ing friction @tc(J)@T2
l l 8#, the spectral peak would then be in

the inhomogeneousbroadening limit: the complex friction
would be well approximated by its initial values:

hJ
R~ t !'hJ

R~0!, hJ
I ~ t !'hJ

I ~0!50,

leading to strongly oscillatory behavior of the complex rate
constants, Eq.~2.25!. So, as we could see by performing the
integration, the energy transfer rateskl→ l 8(t) and thus the
1/T1 terms, Eq.~2.27!, would then be largely negligible,
making the pure dephasing the sole source of the line width,
Eq. ~2.29!,

1

T2*
l l 8~ t !

'
2kBT

\2 S (
J51

`

Rll 8~J!hJ
R~0!D t[s l l 8

2 t. ~2.34!

Inelastic processes would contribute to a line shift, but after
we integrate Eq.~2.25!, neglect the imaginary part of the
friction, and discard the highly oscillatory terms, Eq.~2.28!
would leave us with

D1
l l 8~ t !'D ih

l l 8[2
2kBT

\2 (
J51

`

hJ
R~0!S (

LÞ l

FlL~J!

V lL

2 (
LÞ l 8

Fl 8L~J!

V l 8L
D . ~2.35!

Hence both the polarizability autocorrelation function

Cll 8~ t !5Cll 8~0!e2 i ~V l l 82D ih
l l 8!te2s

l l 8
2

t2/2, ~2.36!

and the line shape itself48

I l l 8~v!5
Cll 8~0!

A2ps l l 8
2

expS 2
~v1V l l 82D ih

l l 8!2

2s l l 8
2 D , ~2.37!

would be Gaussian, with the spectral line having a HWHM
of A2 ln 2sll8 .

Of course, our actual rotational Raman spectrum need
not be in either of these textbook limits. However, we know
that, barring unusual circumstances, vibrational lines do tend
to be homogeneously broadened in liquids.25,49,50Since there

are strong similarities in the basic friction governing both
rotational and vibrational dynamics in liquids,28,29 it is natu-
ral to wonder if we should therefore expect to see largely
homogeneous broadening of the rotational Raman lines for
species such as H2 and D2. Vibration and rotation are very
different kinds of motion though, so the question before us is
how quantitative is the parallelism between the solvent influ-
ences on these disparate degrees of freedom? To explore this
issue, we turn to the numerical calculations.

III. CALCULATIONAL DETAILS

The model we consider is the same as that employed in
our previous work:29 a single H2 or D2 solute, with a bond
length fixed at 0.77 Å, together with 107 Ar solvent atoms.
The H2–Ar interaction potential is taken to be the one pro-
posed by Leroy and Hutson,51 though we use the Xiao and
Coker numerically equivalent Lennard-Jones parametrization
to represent the isotropic part of this potential~s
53.1375 Å, e/kB559.145 K!8 ~with identical potentials
used for the D2–Ar interaction!. Lennard-Jones potentials are
assumed as well for the Ar–Ar interactions~s53.405 Å,
e/kB5119.8 K!.52 All of the calculations reported here were
carried out at a single high-density, supercritical thermody-
namic state~rs350.95, kBT/e52.5!, the same conditions
used by Xiao and Coker.8

As we outlined in our earlier work,29 our semiclassical
approach identifies the real part of the rotational friction
(JhJ

R(t) with the classical limit of Eq.~1.1!. Since the an-
isotropic part of the Leroy–Hutson potential has only aJ
52 term in its spherical harmonic expansion, Eq.~2.18!, all
we needed to compute the friction was the classicalh2(t)
function, which we obtained via Eq.~2.21! from the classical
C2(t)5^A20(t)A20(0)& correlation function. This correlation
function, in turn, was evaluated by performing a molecular
dynamics simulation on the reference system we introduced
in our previous paper~in which the solute is taken to be a
sphere whose interactions with the solvent are solely through
the isotropic part of the solute–solvent potential!.53 The
equations of motion of this, effectively atomic, mixture were
then solved by a velocity-Verlet algorithm54 using a time
step of 2.16 fs with the resulting time evolution used to
propagate theA20 coefficients. When the imaginary part of
the friction was called for, we computed it via the exact
relation

hJ
I ~ t !5

2

p E
0

`

dv sinvt tanhS \vb

2 D E
0

`

dt8 cosvt8hJ
R~ t8!,

~3.1!

the inverse of the relationship used in Sec. II.
The only other ingredients needed for computing the ro-

tational Raman spectrum, Eqs.~2.6! and ~2.7!, are the equi-
librium populations of the rotational statesPl , which we
take to be given by the isolated-molecule result55

Pl5
~2l 11!gl

nse2bEl

( l 50
` ~2l 11!gl

nse2bEl
, El5

\2

2I
l ~ l 11!, ~3.2!

with I the solute moment of inertia andgl
ns the nuclear-spin

degeneracy of each angular momentum state

11216 J. Chem. Phys., Vol. 113, No. 24, 22 December 2000 J. Jang and R. M. Stratt



gl
ns~H2!5 H3 ~odd l !

1 ~even l !, gl
ns~D2!5 H3 ~odd l !

6 ~even l !, ~3.3!

and the angular momentum coupling coefficients, Eq.~2.24!.
The requisite 32 j symbols for these coefficients were evalu-
ated from the analytical formula given in Edmonds44 and the
62 j symbols were calculated using the numerical routine
provided by Zare.45

Integral over trigonometric functions, when needed,
were evaluated via numerical fast Fourier transforms.56

IV. NUMERICAL RESULTS

A. Preliminaries

We begin our presentation by making a few connections
with our study of the rotational energy relaxation of H2 and
D2 in Ar.29 The main objects of interest there were thekl→ l 8 ,
the steady-state transition rates between rotational statesl
and l 8, Eq. ~2.26!. We found that we could understand how
the populations of these states equilibrated by noting that,
aside from theFll 8(2) angular momentum coupling factors
~which constrained the transitions toD l 562!, these transi-
tion rates were largely controlled by the size of the real part
of the friction evaluated at the transition frequencyV l l 8 . The
rates, in particular, were therefore found to decrease mono-
tonically with the energy gap\V l l 85El2El 8 .

What we point out in the present paper is that in order to
understand rotational Raman spectra, we need to understand
the quantum dynamics of rotational transitions in a little
more detail. Knowing the steady-state rate constants no
longer suffices; we have to generalize to a~complex! time-
dependent rate, Eq.~2.25!, the real part of which we illustrate
in Fig. 1. What is evident from the figure, though, is that the

rates for all of the transitions have substantially converged to
their steady-state values within 750 fs or so, with these
asymptotic rates precisely the values we arrived at in our
earlier work~values, which do, in fact, become progressively
smaller asV l l 8 increases!.29 The only difference from what
we had before is that we now see the transient coherent be-
havior, a sharp rise within 50–100 fs followed by rapidly
damped oscillations with frequencyV l l 8 .

Much the same behavior shows up in the time-dependent
dephasing rates themselves, Fig. 2. Both the energy-
relaxation, 1/@2T1(t)#, and the pure dephasing rates,
1/T2* (t), also converge to their asymptotic values within 750
fs. However, since pure dephasing relies on just the zero-
frequency dynamics, and thus involves only elastic transi-
tions, its rate converges monotonically. Moreover, the coher-
ences one sees in the remaining portion, the energy
relaxation, are now superpositions of different frequencies.
Equation ~2.27! tells us that the rate of energy relaxation
between a statel and a statel 8 can be written as the average
of rates associated with each state24,30

1

2T1
l l 8~ t !

5
1

2 S 1

T1
l ~ t !

1
1

T1
l 8~ t !

D ,

~4.1!
1

T1
l ~ t !

5(
LÞ l

kl→L
R ~ t !,

1

T1
l 8~ t !

5 (
LÞ l 8

kl 8→L
R

~ t !.

Since thel 1→ l 2 rate constants are nonzero for anyu l 12 l 2u
52, we see coherent oscillations not only at the frequency of
the actual spectroscopic transition but at the frequencies of
the neighboring transitions as well. Similar transient behav-

FIG. 1. The time-dependent rates for transitions from rotational states with
total angular momentuml to states with total angular momentuml 22.
Shown here are the real parts of the complex rates for several transitions of
H2 and D2 dissolved in high-density supercritical Ar. The asymptotic values
are the steady-state rates for energy transfer to the solvent.

FIG. 2. The time-dependent dephasing rates for two different rotational-
Raman transitions of H2 dissolved in high-density supercritical Ar. In each
panel we compare the total dephasing rate 1/T2(t) with its constituent parts,
the pure dephasing rate 1/T2* (t), and the component arising from energy
relaxation, 1/@2T1(t)#.

11217J. Chem. Phys., Vol. 113, No. 24, 22 December 2000 Dephasing of individual rotational states



ior, and similar convergence to the asymptotic values, are

seen for the time-dependent peak shiftsD1
l l 8(t) andD2*

l l 8(t)
~not shown!.

B. Rotational Raman spectra

With the aid of these dephasing rates, and the analogous
results for the peak shifts, we can assemble the full rotational
Raman spectra from Eqs.~2.7!, ~2.13a!, and ~2.15!. The re-
sults are shown in Fig. 3. For reference, we provide the
steady-state values of the dephasing rates and the peak shifts
in Tables I and II.

So what do these spectra tell us? To answer this question
we need to know where the line shapes fit in the continuum
between the extreme homogeneous and inhomogeneous lim-
its. When the exact spectra are plotted on the same graphs as
the limiting spectra, Fig. 4, the answer becomes apparent: the
spectral lines for both H2 and D2 are almost perfect Lorent-
zians and can therefore be described nearly quantitatively as

homogeneously broadened. We can understand this observa-
tion quite simply by noticing how short the decay time is for
the rotational friction, Eq.~2.31!: tc562 fs for H2 and 65 fs
for D2, values an order of magnitude smaller than even the
smallest dephasing times in Table I.

What this assignment means is that these line shapes do
carry interesting information about the rotational dynamics
in the liquid. For example, how important is energy ex-
change between the solute and the solvent in determining the
spectra? A comparison between the exact spectra and spectra
in which the inelastic contributions~T1 and D1! have been
neglected, Fig. 5, reveals that energy transfer is virtually
negligible with H2; the rotational energy spacing is too large
compared to the natural frequency range of the solvent to
permit significant energy relaxation.29 In D2 ~with energy-
level spacings half as big!, energy relaxation plays a much
more vital role. In particular, as we can see from Table II,
since the solvent-induced frequency shifts stem largely from
inelastic processes, the peak shifts from the isolated-

FIG. 3. The predicted rotational Raman spectra for H2 and D2 dissolved in
high-density supercritical Ar. The four transitions shown here~from left to
right: 0→2, 1→3, 2→4, and 3→5! are broadened compared to their gas-
phase counterparts, but have a barely noticeable shift on this scale.

FIG. 4. A comparison of our full calculation of the rotational Raman spectra
of H2 and D2 dissolved in high-density supercritical Ar with the extreme
homogeneous and inhomogeneous limits of the spectra.

TABLE II. Steady-state frequency shifts~in cm21! for rotational Raman
transitions of H2 and D2 dissolved in Ar.a

Transition H2 D2

( l→ l 8) D D2*
1
2 D1

D D2*
1
2 D1

(0→2) 2.8 20.8 3.6 4.4 20.9 5.3
(1→3) 2.0 0.4 1.6 3.3 0.4 2.9
(2→4) 0.4 0.1 0.3 1.3 0.1 1.2
(3→5) 20.05 0.03 20.08 0.33 0.03 0.30

aSolvent-induced shifts from the isolated-molecule transition frequencies.
The total frequency shift~D! is divided into elastic (D2* ) and inelastic

(
1
2 D1) contributions.

TABLE I. Steady-state dephasing lifetimes~in ps! for rotational Raman
transitions of H2 and D2 dissolved in Ar.a

Transition H2 D2

( l→ l 8) T2 T2* T1 T2 T2* T1

(0→2) 0.9 1.1 1.8 0.6 1.1 0.6
(1→3) 0.9 0.9 6.0 0.7 0.9 1.6
(2→4) 1.6 2.3 3.0 1.2 2.2 1.3
(3→5) 3.0 4.1 6.2 1.9 3.9 2.0

aTotal dephasing (T2), pure dephasing (T2* ), and energy relaxation (T1)
lifetimes for Ar solutions.
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molecule positions are more noticeable with D2 than with
H2.

Still, in an absolute sense, neither solute has shifts all
that large, so perhaps a more revealing view of the situation
is provided by the linewidths, Tables III and IV. As we
would expect, both for H2 and D2, the homogeneous-limit
predictions for the linewidths are in quantitative accord with
the exact results. For H2, though, assuming that pure dephas-
ing is the sole relaxation process would lead to respectable
estimates for the width. The same assumption for D2 would
underestimate the width by a factor of 2.

Since there are no experiments on H2 or D2 in Ar to
compare with, it is difficult to make definitive statements
about the accuracy of our basic theoretical approach. None-
theless, it is informative to compare with the nonadiabatic
simulation predictions of Xiao and Coker for the rotational
Raman spectrum of H2 in Ar ~Table III!.8 Our linewidths are
in reasonably good agreement with the more elaborate cal-
culations of Xiao and Coker, both in terms of magnitudes
and trends. If we remember though, that those authors’ non-

adiabatic simulations did not allow the solvent to induce
transitions between differentl states, we realize that the
proper comparison is not with our overall width, but with the
widths we would predict in the absence of inelastic
processes.57 When we make that comparison we find that the
agreement becomes amazingly good, with the two calcula-
tions within 10% of one another.

A particularly intriguing feature is that when~and only
when! we limit ourselves to the pure-dephasing-induced
broadening in this fashion, we reproduce the Xiao and Coker
finding that the 1→3 line ought to be the broadest.8 Those
authors suggested that their results reflect the way in which a
liquid environment splits the degeneracy of them sublevels
of eachl level — and anl 51 state, they argued, ought to
have the maximum amount of inhomogeneous broadening
caused by such splitting. However, we would analyze this
linewidth rather differently. Because we are considering only
pure dephasing, Eq.~2.29! tells us that anl→ l 8 linewidth
will depend onl only through the angular momentum cou-
pling factorRll 8(2) — and this,m independent, purely kine-
matic, factor is at its largest forl 51. From the perspective of
our work, then, the breadth of the 1→3 line arises from
purely dynamical considerations.

V. CONCLUDING REMARKS

For nearly free rotors such as H2 and D2 in Ar, the piv-
otal role played by the rotational friction in defining the ro-
tational spectroscopy ought to be abundantly clear. It is the
nearly Markovian character of the friction~the 60 fs decay
time! that ensures that the rotational Raman spectrum is ho-
mogeneously broadened; it is the limited frequency range of
the friction that severely limits the efficiency of rotational
energy transfer to the solvent; and it is the zero-frequency

FIG. 5. The role of solute–solvent energy transfer~inelastic! processes in
shaping the rotational Raman spectra of H2 and D2 dissolved in high-density
supercritical Ar. The full calculation~solid line! is compared with a calcu-
lation completely neglecting energy-transfer effects~dotted line!. While the
H2 spectrum is affected only modestly, the D2 spectrum shows how inelastic
processes lead to both broadening and shifting of the observed peaks.

TABLE III. Linewidths ~in cm21! for rotational Raman transitions of H2 dissolved in Ar.a

Transition Predictedb Homogeneousc Inhomogeneousc Elasticd Xiao–Cokere

(0→2) 6.0 6.2 23.7 4.6 4.2
(1→3) 6.0 6.2 26.1 5.6 5.1
(2→4) 3.1 3.2 16.4 2.3 2.1
(3→5) 1.7 1.8 12.4 1.3 1.3

aReported as half-widths at half-maxima~HWHM!.
bLinewidths resulting from our complete calculation.
cLinewidths predicted in the extreme homogeneous and inhomogeneous limits of our calculation.
dLinewidths computed neglecting all inelastic (T1) contributions.
eLinewidths predicted by the nonadiabatic, mixed quantum/classical simulations of Xiao and Coker~Ref. 8!.

TABLE IV. Linewidths ~in cm21! for rotational Raman transitions of D2

dissolved in Ar.a

Transition Predictedb Homogeneousc Inhomogeneousc Elasticd

(0→2) 9.2 9.3 23.7 4.8
(1→3) 7.4 7.7 26.1 5.8
(2→4) 4.5 4.6 16.4 2.4
(3→5) 2.7 2.8 12.4 1.4

aReported as half-widths at half-maxima~HWHM!.
bLinewidths resulting from our complete calculation.
cLinewidths predicted in the extreme homogeneous and inhomogeneous lim-
its of our calculation.

dLinewidths computed neglecting all inelastic (T1) contributions.
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value of the friction that sets the scale of the pure dephasing
processes that account for half of the spectral width for D2,
and for 75%–90% of the width for H2.

Interestingly, every one of these statements could have
been made about the solution-phase spectroscopy of most
vibrational transitions.25,49,58,59Vibrational lines themselves
are normally homogeneously broadened in liquids and the
purely elastic phase relaxation of vibrational modes is nor-
mally much faster than their energy relaxation. Despite the
numerous differences between rotational and vibrational dy-
namics, then, the liquid-state relaxation of discrete quantum
states seems to be fairly universal, probably because the fric-
tion itself is more a function of the solution’s dynamics than
it is of the particulars of the spectroscopically active degrees
of freedom. In fact, some of this behavior is actually fairly
clear from an instantaneous-normal-mode perspective.60 The
high-frequency part of the dynamics, the energy relaxation,
seems to be dominated by strongly repulsive solvent–solute
interactions operating between individual atoms~even when
one has molecular solutes and solvents!.29,61 Whether a sol-
ute atom is involved in a rotation or a vibration is therefore
reasonably irrelevant. The commonalities seen in the lower-
frequency portion of the friction, the part that accounts for
the pure dephasing, are less obvious, however.
Instantaneous-normal-mode theories are necessarily silent on
such matters.62

Of course, the other point we have had to be silent on
during the course of our investigation of individual rotational
states in liquids is whether our reliance on classical dynamics
to understand quantum dynamical events is really justified.
While we found that our particular approach had no diffi-
culty in matching the results of a mixed quantum/classical
simulation, it is not obvious that another semiclassical pre-
scription would not have worked just as well,63 nor it is clear
that the Raman linewidths in our example made for as strin-
gent a test as, say, the energy relaxation rates. Especially
now that we have managed to develop a reasonable level of
insight into the classical features of this problem, it would be
intriguing to see what legitimate quantum dynamical calcu-
lations would have to say about rotational relaxation in liq-
uids.
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