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Dephasing of individual rotational states in liquids
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Department of Chemistry, Brown University, Providence, Rhode Island 02912

(Received 6 July 2000; accepted 29 September 2000

We continue our previous examination of the fate of individual rotational quantum states in liquids
by an analysis of the rotational Raman spectrum of solutions,artd D, in Ar,,. Rewriting the
conventional Kubo treatment allows us to show how the character of the spectrum is an immediate
consequence of the rotational friction felt by the solutes. On evaluating that friction via classical
molecular dynamics we find that the spectra should consist of well-resolved, homogeneously
broadened lines, reflecting the picosecond-long dephasing times. We find, in particular, that the
rotational states in FHshould relax predominantly by pure dephasing, wheregasah its smaller
rotational quanta, should exhibit significant energy relaxation as well. The linewidths predicted for
H, are nicely in accord with those computed by more involved nonadiabatic, mixed
guantum-classical simulations. @000 American Institute of Physids$S0021-9606)0)51448-2

I. INTRODUCTION approaches with only tenuous connections with the molecu-
lar details of liquid dynamict’~2! Other, more molecularly
That nearly free-rotor rotational quantum states can exisgriented efforts have focused on the liquid’s density autocor-
in ordinary classical liquids, at least in some form, is clear g|ation function&**%_an approach that is correct but
Not only do a number of the dissolved hydrides exhibit dis-|argely tautological All of the liquid’s motion leads to den-
crete rotational lines in their spectra, the lines often occur akjty flyctuations; the interesting question is which are the key
frequencies remarkably close to those of their gas-phasgyctuations in the immediate vicinity of the solute. In fact,
_counterg%rgé. The rotational Raman spectra of Bind D; — the literature of this field, viewed quite generally, is replete
in water,»"“and of H, in supercritical CQ,™ make for some ity references to the generic power spectra of liqafds,
of the most intriguing examples, but HCI, DCI, and HF so-pyt there are few pointers as to which of the many different
lutions in SF*~* also display much the same behavior. kinds of power spectra are best at capturing the essential
The question we want to pose is the following: what solyent dynamics involved in molecular reorientation.
liquid-state processes account for the relaxation of these ro- \yhat we have emphasized in our own recent ¥R

tational quantum states? In more concrete terms, we Woull that the critical quantity necessary to understand rotational
like to understand how the rotational Raman lines end URjynamics in liquids is theotational friction, which for a

being broadened by a liquid environment so much more thafinear solute is given quite accurately by
they end up being shifted. The prediction of various kinds of
pure rotational spectra in liquids is, of course, a time- n(t)z(lﬁ(t)-ﬁl(O))/(ZkBT), (1.2
honored problem with considerable attention already having
been devoted to both far-infrared and rotational Ramamwith N the torque the solute would feel if it were held at a
spectrd~*?~?!In some cases these calculations are simplyixed orientation,T the temperature, anés Boltzmann’s
direct simulations of the appropriate linear-response correlaconstant, and where the brackets denote an equilibrium av-
tion functions carried out with varying levels of sophistica- erage over all of the other degrees of freedom of the solution
tion in how the quantum and classical parts of the problenpesides the orientation. Our first efforts showed that for the
are mixed’"**#*3 Other calculations, however, attempt to ordinary classical rotation that most molecules undergo in
understand the ingredients in the spectra through formal lingolution, this function was indeed the relevant friction in the
shape theorie§™*~?*Such efforts can be quite informative in classical sense of being the time-delayed drag on the angular
allowing us to discriminate between homogenetisiami-  velocity?’ Instantaneous-normal-mode calculations of this
ca) and inhomogeneous (statig sources of line 4(t) then allowed us to uncover the detailed molecular ori-
broadening®~?*>and in helping us partition the former into gins of this kind of, fairly standard, rotational relaxatfif®
energy and phase relaxation componéfité’At the heart of ~ Subsequent work showed, however, that this same friction
all of these kinds of calculations, though, is a connectionyas also the key ingredient in understanding the energy re-
between the well-established formal theories and the key migxation of guantized rotational states in |iqu?asThe rates
croscopic features of the liquid’s dynamics—and it is hereof energy relaxation turned out to obey a rotational Landau—
where much of the previous theoretical work on the spectrosteller relation: the transition rate between rotational states in
copy of hydrides has had difficulties. a liquid was shown to be proportional to the value(tife
Some of the interpretation of the line broadening haseal part of the classical frequency-dependent friction,
been in terms of formal stochastic or quasiharmonic models,

(w)= fmdtCOSwtn(t), (1.2
0
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evaluated at the frequency of the rotational transition. This 1 (= )

particular power spectrum of the liquid—and therefore the l(®)= EJ dte '“'C(1), (2.9

limited band of frequencies available to the solution—was -

thus seen to be one of the main ingredients in determining 2

the lifetime of rotational quantum staté. C()= 2 (aq(0)af(t)), (2.2
Still missing from our analysis, though, is any measure a=-2

of the time period over which quantized rotational motionyjth aq the gth component of the second rank spherical

should retain its phase memory—its pure dephasing ¥fne. pojarizanility tensor anad{(t)=(—1)%_4(t) understood to

Since both energy and phase relaxation can, in principléye the adjoint of the polarizability operator in the Heisenberg
contribute to spectral line shap€s?°we need to address the representation,

latter before we can begin to understand the actual spectra of ; S
hydrides. What we shall do in this paper is to show how a  aq(t)=€""""ae™ """ 2.3
; 30-32 ; B
ey Kamar e bingthe solutrs Harilorir
P 9 For the weakly coupled linear solute such ag H is

have been discussing. The fact that pure dephasing ends @Bnvenient to separate the anisotropic part of the solute—

depending on the zero-frequency frictiaff(0) (much as it gojvent interaction/ from the rest of the Hamiltoniakl,,
does in vibrational spectroscopy >® means that our

instantaneous-normal-mode methods cannot be used H=Hy+V(6,4,R), (2.49
here?’=2%3"put direct evaluation by classical molecular dy- . .
namics simulation is simple enough. With the aid of such Ho=Hr(0.¢,0.¢)+Hg(R,R), (2.4b

simulations, we show how this formalism can be used Quith ¢ and ¢ defining the orientation of the solute in the
predict and study the spectra of Bind D, dissolved in Afy . |aporatory frame and the remaining coordinates, the center-

Since there have been few rotational Raman experimentsy ass coordinate of the solutgand the coordinates of the
published on these systems to d&téhe most pertinent com- N solvent moleculesR=(rq,...,ry) comprising the bath de-
parisons for this work certainly come from the Xiao and

) : ! .- grees of freedom. Within this framework, the uncoupled ref-
Coker seminal mixed quantum mechanical and classmag

. ; ) ¢ rence HamiltoniarH, includes bothH,,, the rotational
simulation of the rotational Raman spectra of iH Ar, .2 I ;
p OF Hamiltonian of the isolated solute, ardly, the reference

While thosg _authors neglected the possibility of tr{;\nsitionspart of the bath Hamiltonian. Note that the latter contains not
between distinct total angular momentum stdt¢an issue oy the solvent—solvent interaction but also the isotropic
we shall return to latey they nonetheless successfully simu- part of the solute—solvent potential.

lated the interconversion among the different angular mo- ¢ 4o rotor—bath coupling is sufficiently weales it is
mentum components by viewing the process as a SeqUeNCepary 29 jt makes sense to work in ¥, basis, the basis of
of nonadiabatic transitions induced by the liquid. We will eigenstates ofl,,;, which makes it possible to divide the

want to see if we find qualitatively, or even quantitatively, spectrum into contributions from eath-1’ transition
similar spectra and, in particular, if we find the same kind of

nonmonotonic dependence of linewidth bihat Xiao and
Coker do. More generally, we shall want to consider the C(t)—% Cur (1), 29
extent to which such elaborate mixed quantum-classical '

simulations are really necessary to understand the behavior P, 2 ' I

of a quantal solute in a classical liquidi. Ci(V= 5757 > 2 2 {Imlag0)I'm’)
The remainder of this paper will be organized as fol- a=-2m=-lm'=—y’

lows: In Sec. Il we will summarize the molecular-level Kubo (I ’m’|a£(t)|lm>>5, (2.6)

theory of rotational Raman spectroscopy and show how this

theory can be recast into a form in which the dynamics of the 1 (= it
liquid enters only through the rotational friction. We then '“’(“’):ﬁ wdte Cir (1), |(“’):§1 hio (@),
turn to the specific cases of;land D, in Ar;y. Our choices ' 2.7)

for potentials and calculational approaches are detailed in -
Sec. 11, and our numerical results are presented in Sec. IWhere the()g brackets denote an equilibrium average over

We conclude in Sec. V with a brief discussion of our find- the bath degrees of freedom aRdis the equilibrium popu-
ings. lation of rotor states with the total angular momentlff**

We can now take advantage of some standard operator
manipulation$?3%32By writing the anisotropic potential in

Il. ROTATIONAL RAMAN SPECTROSCOPY AND the interaction representation
ROTATIONAL FRICTION
\/(t)= @ itHolfi\/4itHq /%
A. Microscopic Kubo theory V(t)=e "oltvetio, 2.9

Within linear response theory, the rotational Ramanand introducing the notation that for any operatarand B
spectrum of a molecule in a liquid can be written as the Xp

. ) : e A*B=[A,B],
Fourier transform of the anisotropic polarizability autocorre-

lation function”® we can express the time-dependent polarizability formally as
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In much the same way, there will be elastia’('’) and

inelastic @'1") contributions to the frequency shift, which
we can write as

) it )
a;’(t)=e'tH0’hexp+(%deTV(T)X)aEe"‘HO’*", (2.9

where the notation exp refers to a time ordered

. 2,30 . - , ,
exponenuaF._ But Eg. (2.9 means that the pqlarlzabmty A”,(t):A’z‘” (t)+%A! (t). (2.17)
autocorrelation function, Eq(2.6), can be rewritten as a

product of a sinusoidal term oscillating at the frequency ofet us turn now to the molecular origins of each of these
the isolated-molecule transition terms.

Oy =(E—Ep)lt, (2.10

nd an aver liquid- m lation f r
and an average liquid-state modulation facto B. The connection with rotational friction

C“,(t)=C“,(0)e‘iQH"< exp+(|— fthV( ’T)X)> , Our basic approach to thinking about the rotational fric-
fJo 0 tion within the kind of weak coupling situation presented by
(2.1)  the hydrides will be the same as we used previously in our
treatment of rotational energy relaxatith.Unlike the
strongly coupled isotropic portion of the solute—solvent in-
<X>”,ZEqEnm,<<Im|aq|l ’m’)(l’m’lXc:gHm))B. te;;c;;?;;,i:vgrggpssoaf\fter% zﬁ?sa:)r::jothmsotroplcpart of the
S g mm ((IM[ gl m")(1"m’ [ ag|Im))g p Py,

with the brackets here defined so that for any operstor

Equation(2.1)) is in precisely the form appropriate for a J

standard Kubo expansiéh>°*2Since in an isotropic liquid V(9’¢'R):J21 K;_J A(R)Y (6, ),
the first-order term will vanish by symmetry, we can write,
through leading order in the fluctuations of the coupling,

Ci/(t)=Cy.(0)e "'t

, (2.18
AJK(R)ZJO dng'O dosinoV(6,6,R)Y(6,0),

1 [t 4 — meaning that the crucial quantities will be the correlation
— ! X 1\ X
XeXF{ ﬁfodeo dr'(V(n)*V(7" )y | functions of the expansion coefficierfs,
(212 Cy() =(As0(t)A30(0))g,
Thus, the basic structure of the polarizability autocorrelation _ itHa/h itHa A (2.19
function is Ag(t)=ee Ay e T8,

Cyi/(t)=Cy(0)e 1" ex — gy (1)], (2.133  Where(in a slight switch from our previous notatigfl this

and all of the other correlation functions in this section are
taken to be complex averages of time-dependent quantum
mechanical operators. However, the complex rotational fric-

. o . o tion, Eq.(1.1), can also be expanded in orders of the anisot-
with the liquid dynamics embodied in the second cumulant,qpy

t T
g||r(t)=f0deodT, G||V(T,T,), (213b

#2Gy (1,7 ) =(V(TV (") Yy (2.14

We will proceed shortly with the explicit evaluation of ’7“):;1 75(0), (2.20
the G,;» cumulant, but it is clear what kind of terms will
result. The cumulant will have both real and imaginary com-enabling us to make a connection between the ¢within
ponents, with the reablephasingterms leading to damping the weak coupling limjt®
and the imaginary(oscillatory) terms contributing to fre-

: ; b
quency shn‘t;. Moreqver., each of thgse components will have 7y(t) = J Cy(t), (2.21)
both inelastic contributions, involving net energy transfer 2kgT
with the liquid, and energy-conserving, elastic, contributions.
ifi i JJ+1)(23+1
More specifically, we find that by= ( ii,- ) . (2.22

t 1 t
g”’(t):"‘odTT”’ T)_ijodTA||r(T), (215)

n All of the key spectroscopic quantities, Eq2.16) and

(2.17), depend on the liquid dynamics solely through the
with the elastic and inelastic portions of the dephasing proc(t) correlation functions, and are therefore completely
ducing the pure-dephasing’]) and population relaxation controlled by the components of the rotational friction. The
(Ty) contributions, respectivef?, > technical details of evaluating these quantities are discussed

1 1 1 elsewheré? but we can summarize the steps easily enough.
TSI (2.16  After some angular momentum algebra we find that@he
T2 (1) T30 () 2T3 (1) cumulant can be written as
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ki =Ilim k_,(t)
ZG../m—E by[Ry(3)CR(H) +iT, (3)CY(1)] e Tt

4kgT
= Fi.(J
+2 b, —hz—gl i(Jd)

> Fuu(de ekt
L#1"

. XJ dr cosQ 7 7X(7)—sinQ 7 73(7)]
+ F|L<J>e'“'L‘cJ<t>), (223 0 o o
=
8KgT 1 - R
- hZ 1+eXFx ﬁQlL B 2 FIL(J)"]J(QIL’)-
where the superscript® and | denote real and imaginary (2.26

parts, and the various angular-momentum coupling coeffi-

cients are defined in terms of Band 64 symbols345 Here 8= (kgT) " and we have made use of the iderffit/

that for any quantum correlation functionC(t)
=(A(t)A(0)),
21'+1 (13172 o ho o
F”'(‘]):J(J+1)(OOO) f dtsinwtC'(t):—tanr(TB)f dt coswtCR(t).
0 0
On substituting our full, time-dependent, complex rate
Ty (D) =Fy(J)—F:(J), constants, E¢2.25), into Eq.(2.23, and substituting that, in
(2.24 turn, into Eq.(2.13bh we find that we do indeed produce
expressions of the form of Eq&.15—(2.17). The inelastic
R () =Fy(3)+F/(3)—2Dy.(J), contributions to the dephasing and to the frequency shift are
simply given by sums of these rate constants

21+1)(21"+1)
DII’(‘J):%(_].)‘J T“ (t) I; kl—»L(t)+L§ k|r L(t (227)
3017317 [ 131
X(OO())( 000)[|'2|’}' (t)_Lél k()= 2 ki_L(D). (2.28

The elastic contributions, by contrast, stem fréwhat are
The form of Eq.(2.23 makes the basic behavior clear; essentially the zero-frequency Fourier transforms of the fric-

while the first sum includes only elastic contributions, thetion
second sum brings in inelastic transitidns’—L. We can

write these inelastic terms in a somewhat more transparent 2kBT E R”'(J)j dr 75(r (2.29
fashion, though, by introducing the complex, time-dependent T3 (1)
“rate constants,” o
*I1’ 2kgT ' I
A3 (t):—TZl Tur() | d7 (7). (2.30
kmNF%Z bJFlL(\])J'theiQILTCJ(T) Equations (2.25 and (2.27—(2.30, together with Egs.
J=1 0

(2.133 and(2.15-(2.17), constitute the principal results of
this paper. If nothing else, these expressions make quite evi-
dent how direct the connections are between the rotational
t O Raman spectrum and th@nisotropy-resolved rotational
Z‘ 'L(‘])fodTeIQlL 75(7). (2.29 friction. More than that, though, they indicate precisely how
the friction enters the various features of the Raman line
shapes.

oo

4kBT

The real part of this rate constamRHL(t), is, in fact, pre-
cisely the rate off —L transitions predicted by first-order
time-dependent perturbation theory as a functiont,othe Though the details are specific to weakly coupled rota-
time elapsed after populating a rotational stafehis expres- tional states of a linear molecule dissolved in a liquid, the
sion may be a bit unfamiliar looking because it contains theesults obtained in the previous sections are of the classic
full range of dynamics, starting from the earliest transientsKubo form. As such, we know the basic range of possible
However, the long-time limit is quite familiar; the outcomes$? As always, the critical comparison is between
asymptotic rate constant is nothing more than our previoushe steady-state dephasing timig=T,() and the decay
Fermi’s Golden rule resifft for the steady-state rate of popu- time, 7¢, of some relevant correlation function. Fop, Eind
lation relaxation, written in terms of the Fourier transform of D,, in which a single value of dominates, what we need to
the friction, Eq.(1.2), look at is the decay time for théth-order rotational friction,

C. Line shapes and lifetimes
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= oma(t)
7.(J)= f dt . (2.30)
=]

Should this friction decay very quickly for sonte-|’

J. Jang and R. M. Stratt

are strong similarities in the basic friction governing both

rotational and vibrational dynamics in liquié$?°it is natu-

ral to wonder if we should therefore expect to see largely
homogeneous broadening of the rotational Raman lines for

transition[ 7,(J)<Th ], the spectral peak would be in the species such aszHand D,. Vibration and rotation are very
homogeneoubroadening limit: the polarizability autocorre- different kinds of motion though, so the question before us is

lation function, Egs.(2.133 and (2.15, could be written

how quantitative is the parallelism between the solvent influ-

with both the time-dependent dephasing rates and the timé&nces on these disparate degrees of freedom? To explore this
dependent peak shifts replaced by their steady-state valuésue, we turn to the numerical calculations.

[1T)" and Ay, =Ay. (), respectively,
Cu'(t):Cu/(0)94(9”'7A”’)te’t/Tg,, (2.32
rendering the peak itself, Eq.7), perfectly Lorentziar{®
Cyi1(0) Ty
i (w)= e 1
m (l/TZ ) +(w+Q||,—A”,)

(2.33

with a half-width at half-maximuniHWHM) of 1/Tg' .

Were we in the opposite limit, with a very slowly decay-

ing friction [TC(J)>T2/], the spectral peak would then be in
the inhomogeneoudroadening limit: the complex friction

would be well approximated by its initial values:

7O =750), 7i()=n50)=0,

Ill. CALCULATIONAL DETAILS

The model we consider is the same as that employed in
our previous work® a single H or D, solute, with a bond
length fixed at 0.77 A, together with 107 Ar solvent atoms.
The H,—Ar interaction potential is taken to be the one pro-
posed by Leroy and Hutsoh,though we use the Xiao and
Coker numerically equivalent Lennard-Jones parametrization
to represent the isotropic part of this potentiér
=3.1375A, e/kg=59.145K?® (with identical potentials
used for the D—Ar interaction. Lennard-Jones potentials are
assumed as well for the Ar—Ar interactiofis=3.405A,
e/kg=119.8 K).>2 All of the calculations reported here were
carried out at a single high-density, supercritical thermody-
namic state(po®=0.95, kgT/e=2.5), the same conditions

leading to strongly oscillatory behavior of the complex rateysed by Xiao and Cokér.

constants, Eq2.25. So, as we could see by performing the
integration, the energy transfer ratles,;/(t) and thus the

As we outlined in our earlier work] our semiclassical
approach identifies the real part of the rotational friction

1T, terms, Eq.(2.27), would then be largely negligible, s ,,R(t) with the classical limit of Eq(1.1). Since the an-
making the pure dephasing the sole source of the line widthsotropic part of the Leroy—Hutson potential has only a

Eqg. (2.29,

1 2kgT
RO

[

ERur(J)n?(O))tEUﬁ,t- (2.34

J=1

=2 term in its spherical harmonic expansion, E218), all
we needed to compute the friction was the classiggl)
function, which we obtained via E€R.21) from the classical
C,(t) =(A,(t)A,(0)) correlation function. This correlation

Inelastic processes would contribute to a line shift, but aftefUnction, in turn, was evaluated by performing a molecular

we integrate Eq(2.295, neglect the imaginary part of the

friction, and discard the highly oscillatory terms, E8.28
would leave us with

, , 2kaT < Fi(J
A =ali=- 2T s mg)[ s P
he =1 Z Q
Firl(J)
— . 2.
L#1" Q|'|_ ) ( 33

Hence both the polarizability autocorrelation function

2

Cy(1)=Cyp(0)e (=i tg 0y 1712 (2.36
and the line shape itséf
Cy/(0) (w+Qy—AlL)?
Ill,(w):mex%_Tﬁ)’ (237)

dynamics simulation on the reference system we introduced
in our previous pape(in which the solute is taken to be a
sphere whose interactions with the solvent are solely through
the isotropic part of the solute—solvent potenttdl The
equations of motion of this, effectively atomic, mixture were
then solved by a velocity-Verlet algorithfhusing a time
step of 2.16 fs with the resulting time evolution used to
propagate the\,, coefficients. When the imaginary part of
the friction was called for, we computed it via the exact
relation

| 2 (= . howB\ [= R
ny(t)= —f dw sinwt tanh —— f dt’ coswt’ 73(t"),
7 Jo 2 0
(3.1
the inverse of the relationship used in Sec. Il.
The only other ingredients needed for computing the ro-

tational Raman spectrum, Eq.6) and (2.7), are the equi-
librium populations of the rotational statd%, which we

would be Gaussian, with the spectral line having a HWHM@ke to be given by the isolated-molecule result

Of \ 2 |n20'||/.

Of course, our actual rotational Raman spectrum need P,=
not be in either of these textbook limits. However, we know

(21+1)g%e FE c ﬁZII L
S7 21+ 1)gM%e PR T 21 (+1),

(3.2

that, barring unusual circumstances, vibrational lines do tendith | the solute moment of inertia argf® the nuclear-spin

to be homogeneously broadened in liquittd**°Since there

degeneracy of each angular momentum state
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FIG. 1. The time-dependent rates for transitions from rotational states witlFIG. 2. The time-dependent dephasing rates for two different rotational-
total angular momentunh to states with total angular momentursa- 2. Raman transitions of Hdissolved in high-density supercritical Ar. In each
Shown here are the real parts of the complex rates for several transitions ganel we compare the total dephasing raf(t}) with its constituent parts,

H, and D; dissolved in high-density supercritical Ar. The asymptotic values the pure dephasing rateTZ/(t), and the component arising from energy
are the steady-state rates for energy transfer to the solvent. relaxation, 1/2T,(t)].

) 3(oddl) . 3 (odd 1)
91 H) =11 (evenl) 9 (P2=|g (even Iy (33  rates forall of the transitions have substantially converged to
their steady-state values within 750 fs or so, with these

. , o asymptotic rates precisely the values we arrived at in our
The requisite 3-j symbols for these coefficients were evalu- o jier work(values, which do, in fact, become progressively

ated from the analytical formula given in Edmofitiand the smaller as(),,, increases? The only difference from what

6~ symbols were calculated using the numerical routingye nag pefore is that we now see the transient coherent be-

provided by Zaré? _ _ _ havior, a sharp rise within 50—100 fs followed by rapidly
Integral over trigonometric functions, when needed,damped oscillations with frequendy;, .

were evaluated via numerical fast Fourier transforfns. Much the same behavior shows up in the time-dependent
dephasing rates themselves, Fig. 2. Both the energy-

IV. NUMERICAL RESULTS relaxation, 1/2T,(t)], and the pure dephasing rates,
A. Preliminaries 1/T%(t), also converge to their asymptotic values within 750
) ] ] . fs. However, since pure dephasing relies on just the zero-

_ We begin our presentation by making a few connectiongyeqency dynamics, and thus involves only elastic transi-
with ourzgtudy of the rotational energy relaxation of &\d  yjons its rate converges monotonically. Moreover, the coher-
D, in Ar.“* The main objects of interest there were ke, , ences one sees in the remaining portion, the energy
the steady-state transition rates between rotational Statesrelaxation, are now superpositions of different frequencies.

andl”, Eq.(2.26. We found that we could understand how g ation (2.2 tells us that the rate of energy relaxation
the populations of these states equilibrated by noting thay,anveen a stateand a statéd’
aside from theF;,(2) angular momentum coupling factors

(which constrained the transitions id = + 2), these transi-

and the angular momentum coupling coefficients, BR4).

can be written as the average
of rates associated with each st&t¥

tion rates were largely controlled by the size of the real part 1 1/ 1 1

of the friction evaluated at the transition frequeity, . The A ( 0 + ) ,

rates, in particular, were therefore found to decrease mono- 2T (1) 1 Ti (1)

tonically with the energy gapQ, =E,—E, . 4.9

What we point out in the present paper is that in order to 1 _ R 1 _ R
understand rotational Raman spectra, we need to understand Tj(t) IZ:I Km0, TV (1) 2‘7' K0

the quantum dynamics of rotational transitions in a little

more detail. Knowing the steady-state rate constants n&ince thel,—|, rate constants are nonzero for ghy—I,|
longer suffices; we have to generalize técamplex time- =2, we see coherent oscillations not only at the frequency of
dependent rate, EQR.25), the real part of which we illustrate the actual spectroscopic transition but at the frequencies of
in Fig. 1. What is evident from the figure, though, is that thethe neighboring transitions as well. Similar transient behav-
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w/27C (Cm-l) FIG. 4. A comparison of our full calculation of the rotational Raman spectra
of H, and D, dissolved in high-density supercritical Ar with the extreme

. ) . . homogeneous and inhomogeneous limits of the spectra.
FIG. 3. The predicted rotational Raman spectra fgraHd D, dissolved in

high-density supercritical Ar. The four transitions shown hirem left to
right: 0—2, 1—3, 2—4, and 3-5) are broadened compared to their gas-

hase counterparts, but have a barely noticeable shift on this scale. .
P P y homogeneously broadened. We can understand this observa-

tion quite simply by noticing how short the decay time is for
ior, and similar convergence to the asymptotic values, aréhe rotational friction, Eq(2.31): 7.=62fs for H, and 65 fs

seen for the time-dependent peak sha‘fi!%'(t) andA*”'(t) for D,, values an order of magnitude smaller than even the
(not show. 2 smallest dephasing times in Table I.

What this assignment means is that these line shapes do
carry interesting information about the rotational dynamics
in the liquid. For example, how important is energy ex-

With the aid of these dephasing rates, and the analogoushange between the solute and the solvent in determining the
results for the peak shifts, we can assemble the full rotationapectra? A comparison between the exact spectra and spectra
Raman spectra from Eq&.7), (2.133, and(2.15. The re-  in which the inelastic contribution€l; andA;) have been
sults are shown in Fig. 3. For reference, we provide theneglected, Fig. 5, reveals that energy transfer is virtually
steady-state values of the dephasing rates and the peak shifisgligible with H,; the rotational energy spacing is too large
in Tables | and II. compared to the natural frequency range of the solvent to

So what do these spectra tell us? To answer this questiggermit significant energy relaxatidi.ln D, (with energy-
we need to know where the line shapes fit in the continuunevel spacings half as bigenergy relaxation plays a much
between the extreme homogeneous and inhomogeneous linhore vital role. In particular, as we can see from Table II,
its. When the exact spectra are plotted on the same graphs sisice the solvent-induced frequency shifts stem largely from
the limiting spectra, Fig. 4, the answer becomes apparent: thaelastic processes, the peak shifts from the isolated-
spectral lines for both FHand D, are almost perfect Lorent-
zians and can therefore be described nearly quantitatively as

B. Rotational Raman spectra

TABLE Il. Steady-state frequency shifen cm™?) for rotational Raman

TABLE |. Steady-state dephasing lifetimé® ps) for rotational Raman transitions of H and D dissolved in Ar?

transitions of H and D, dissolved in AR

Transition H D,
Transition H D, (1=1") A A3 3A, A A3 3A
’ * *
(I=1") T2 T2 T T2 T2 Ty (0—2) 28  -08 36 44 -09 53
(13) 0o 0o 60 o7 0o 16 (2—4) 0.4 0.1 03 13 01 12
(24) 16 23 30 12 2 13 (3-5) ~0.05 003 -008 033 003 030
(3—5) 3.0 41 6.2 1.9 3.9 2.0

aSolvent-induced shifts from the isolated-molecule transition frequencies.

*Total dephasingT,), pure dephasingT?), and energy relaxationT) The total frequency shiffA) is divided into elastic £3) and inelastic
lifetimes for Ar solutions. (% A,) contributions.
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TABLE IIl. Linewidths (in cm™?) for rotational Raman transitions of,Hilissolved in A’

Transition Predictet Homogeneoufs Inhomogeneolfs Elastic Xiao—Cokef
(0-2) 6.0 6.2 23.7 4.6 4.2
(1—3) 6.0 6.2 26.1 5.6 5.1
(2—4) 3.1 3.2 16.4 2.3 2.1
(3—5) 17 18 12.4 13 13

®Reported as half-widths at half-maxintid WHM).

PLinewidths resulting from our complete calculation.

‘Linewidths predicted in the extreme homogeneous and inhomogeneous limits of our calculation.
dLinewidths computed neglecting all inelasti€,{ contributions.

€Linewidths predicted by the nonadiabatic, mixed quantum/classical simulations of Xiao and(Beke8.

molecule positions are more noticeable with fhan with ~ adiabatic simulations did not allow the solvent to induce
H,. transitions between differerit states, we realize that the
Still, in an absolute sense, neither solute has shifts alProper comparison is not with our overall width, but with the
that large, so perhaps a more revealing view of the situatioWwidths we would predict in the absence of inelastic
is provided by the linewidths, Tables Il and IV. As we processesd’ When we make that comparison we find that the
would expect, both for Hand D, the homogeneous-limit agreement becomes amazingly good, with the two calcula-
predictions for the linewidths are in quantitative accord withtions within 10% of one another.
the exact results. For Hthough, assuming that pure dephas- A particularly intriguing feature is that whefand only
ing is the sole relaxation process would lead to respectabl@hen we limit ourselves to the pure-dephasing-induced
estimates for the width. The same assumption fomduld  broadening in this fashion, we reproduce the Xiao and Coker
underestimate the width by a factor of 2. finding that the 1-3 line ought to be the broadésThose
Since there are no experiments o &f D, in Ar to  authors suggested that their results reflect the way in which a
compare with, it is difficult to make definitive statements liquid environment splits the degeneracy of tiesublevels
about the accuracy of our basic theoretical approach. Nonéf eachl level — and anl=1 state, they argued, ought to
theless, it is informative to compare with the nonadiabatidhave the maximum amount of inhomogeneous broadening
simulation predictions of Xiao and Coker for the rotational caused by such splitting. However, we would analyze this
Raman spectrum of 4n Ar (Table 111).2 Our linewidths are  linewidth rather differently. Because we are considering only
in reasonably good agreement with the more elaborate capure dephasing, Eq2.29 tells us that ar—1" linewidth
culations of Xiao and Coker, both in terms of magnitudeswill depend onl only through the angular momentum cou-
and trends. If we remember though, that those authors’ norling factorR;;,(2) — and thismindependent, purely kine-
matic, factor is at its largest fé= 1. From the perspective of
our work, then, the breadth of the—413 line arises from
purely dynamical considerations.

L L T T T T = T 77
j ------ w/o inelastic process

|1

V. CONCLUDING REMARKS

For nearly free rotors such as,ldnd D, in Ar, the piv-

otal role played by the rotational friction in defining the ro-
tational spectroscopy ought to be abundantly clear. It is the
nearly Markovian character of the frictioithe 60 fs decay
time) that ensures that the rotational Raman spectrum is ho-
mogeneously broadened; it is the limited frequency range of
the friction that severely limits the efficiency of rotational
energy transfer to the solvent; and it is the zero-frequency

Intensity (arb.)

I IR O I N S
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w/2mc(cm 1)

[~ T T 1T 7 1
ZI ------ w/o inelastic process

TABLE IV. Linewidths (in cm™?) for rotational Raman transitions of,D
dissolved in A

Transition Predictdd Homogeneods Inhomogeneols Elasti¢

Intensity (arb.)

100 150 200 250 300 350 (0—2) 9.2 9.3 23.7 4.8

m/2nc(cm_1)

(1—-3)

7.4

7.7
4.6

26.1
16.4

5.8
2.4

(2—4) 45
(3—5) 2.7 2.8 12.4 1.4
FIG. 5. The role of solute—solvent energy transfieelastio processes in
shaping the rotational Raman spectra gfdd D, dissolved in high-density
supercritical Ar. The full calculatiorisolid line) is compared with a calcu-
lation completely neglecting energy-transfer effddstted ling. While the
H, spectrum is affected only modestly, thg §pectrum shows how inelastic
processes lead to both broadening and shifting of the observed peaks.

®Reported as half-widths at half-maxinid WHM).

bLinewidths resulting from our complete calculation.

‘Linewidths predicted in the extreme homogeneous and inhomogeneous lim-
its of our calculation.

dLinewidths computed neglecting all inelasti€,{ contributions.
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