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The manner in which most molecules reorient in liquids bears little resemblance to the process in the
gas phase. For small-moment-of-inertia species such as the hydrides, however, the observation of
discrete spectroscopic lines corresponding to individual isolated-molecule quantum transitions
suggests that one is actually seeing single-molecule dynamics perturbed only weakly by the
environment—just as one sees with solution-phase vibrational behavior. We examine here the
degree to which such individual rotational quantum states remain well defined in liquids by
considering the rates of discrete energy-level-to-energy-level transitions in solution. For rotational
quantum states that do preserve their free-rotor character in a liquid, we find that the transition rate
between angular momentum states obeys a rotational Landau—Teller relation strikingly similar to
the analogous expression for vibration: the rate is proportional to the liquid’s rotational friction
evaluated at the transition frequency. Subsequent evaluation of this friction by classical linearized
instantaneous-normal-mode theory suggests that we can understand this relationship by regarding
the relaxation as a kind of resonant energy transfer between the solute and the solution modes. On
specializing to the particular cases of Bind D; in Arg,, we find that the most critical modes are
those that move the light solute’s center of mass with respect to a single nearby solvent. This
observation, in turn, suggests a generalization of instantaneous-normal-mode ideas that transcends
both linear coupling and harmonic dynamics: an instantaneous-pair theory for the relaxation of
higher-lying levels. By employing a linearized instantaneous-normal-mode theory of relaxation
within the liquid band and an instantaneous-pair theory for higher-frequency relaxation, we find that
the resonant-transfer paradigm is reasonably successful in reproducing molecular dynamics results
spanning a wide range of different rotational states. 2@0 American Institute of Physics.
[S0021-960600)50138-X]

I. INTRODUCTION exhibiting quantized rotation in liquids, however, offer us an
) intriguing spectroscopic window into how gas-phase quan-
There are comparatively few examples of moleculesm dynamics can be altered by a liquid environnieht.To
whose discrete rotational quantum states survive immersiog certain extent, this same information is revealed by experi-
in a liquid. The isolated-molecule energy level spacings argnents that follow the rotational behavior of gases as a func-
not only typically far smaller than the thermal energy, the(on of increasing densit}f But, unless the separate spectro-
violent torques exerted by a solvent make for relaxation rategqqpic lines from individual rotational states persist into the
rapid compared to rotational periods. The end result is thafqyiq phase, these studies run out of information just when
straightforward spectroscopic measurements of reorlentqhey reach the regime we would like to understand.
tional dynamics in liquids will rarely see anything besides  “1he solutes we would like to focus on here are the hy-
some sort of generic rotational diffusion. Most fluorescencearidesy the molecules with the smallest moments of inertia,
depolarization experiments, in particular, tend to provideyq thus the largest rotational energy level spacings:
little in the way of microscopic insight into the processes bsz, D,, and HCI, for examplé~1 It has been known for

which rotations come tq equilibrium in qul_Jids. It is not that quite some time that solutions of dihydrogei1314the
the values of the diffusion constants obtained from such ®XRydrogen-halided;® and ammonid (and their deuterium

periments do not carry any molecular information; recents pgtityted analogugall exhibit clear remnants of gas-phase
studies have emphasized that simple theories portraying thestional energy levels in their infraretR), far-IR, or ro-

solute as a featureless sphéveellipsoid in a homogenized  a(ional Raman spectra, at least under certain conditions. In
continuum will not always work,and even when they do, tact part of the motivation of this work is the recent atten-
they may need a fairly careful representation of the solutg,, gevoted to the spectroscopy of solutions of &hd
charge distribution to do them justiéewhat we can say, D,.° 4 State resolved rotational-Raman spectra of these spe-
though, is that the potentially interesting mechanical detailgjas have now been measured in supercriticah @nd in
of the solyentdynamicsare invariably obscured by diffu- both liquid and solid |§D.10’11'14Yet the details of the earlier
sional motion. _ studies, the line shapes and even the conditions under which
The molecules that do fall into the select category ofgne should expect to see discrete spectral lines, remain
poorly understood. The first far-IR studies of HCl and DCl in
dElectronic mail: richargstratt@brown.edu SFy) displayed well-resolved peaks for thle—~J+1 HCI
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rotational transitions,but only the rotational Raman spec- Knn1=(2n/ uhwoB)[1+exp —hweB)] 1 9in( wo)-
trum (looking atJ—J+ 2 transitiong shows the correspond-

ing peaks for DCF. Far IR studies of HCl in the noble gases The factor in the brackets is needed to build in the detailed-

are similarly striking® Individual rotational lines become balance condition that at a temperatdrfwith 8=1/(ksT)]
progressively better resolved as one proceeds frog tr .

Kry to Xey, solvents—exactly opposite from what one  Kno.n-1/Kn-1_n=expfiwop), (1.2

might expect from general tendency of increasing solute, s the details of the energy transfer process itself appear in
solvent interaction to broaden spectral lines. Some of thigye vibrational friction b(@), which (at the level of this

trend is undoubtedly a result of the fact that the three ”Obledevelopmer)tis simply the cosine transform of a force auto-
gas solvents have been studied at successively higher temgrelation function

peraturegthereby increasing the intensity of the more easily

resolved higher frequency linesstill, when one_lpoksjust at (@)= fmdtcosmnvib(t), (1.39
the more comparable lower—frequency transitions, the basic 0

counterintuitive trend seems to remé&in.

Theoretical efforts at understanding rotational energy re- in(t) = B(F(DF(0)), (1.30
laxation have been neither plentiful nor targeted at quantumwith the forceF what the force exerted by the solvent along
state-resolved systems. There have been a few interestinige normal mode coordinate would be if the normal coordi-
molecular dynamics studies of classical rotational energy auaate were held fixe 28
tocorrelation functions in liquids,~‘°but not nearly as many In the generalized-Langevin-equation formulation of vi-
as there have been of orientational and angular-velocity aldrational dynamics, this correlation function actually is a
tocorrelation functions. Similarly there have been efforts at'friction” in the very literal sense that the drag force on the
predicting the rotational and rovibrational spectroscopy ofvibrating coordinate stems from the convolution of this fric-
hydride solutions, but based on phenomenological rathetion with the velocity’”?*[Technically, what is called for is
than microscopic treatments of the solvéhfThe papers the autocorrelation function of a force “dynamically or-
closest in spirit to the present work are the groundbreakinghogonal” to the vibration, but the distinction seems to be
fully microscopic, mixed-quantum-classical simulations ofunimportant in practicé’] Thus Eq.(1.1) has a nice inter-
rotational Raman spectrum obkh H,0y ¢ and in Ay, /1314 pretation as a statemen.t. o_f the quctua_ltlon—d|SS|pat|on
but here as well, energy transfper sewas not the focus. theorem®—that the(nonequilibrium rate at which quanta of
Indeed in the case of Ay, no transitions betweed levels ~ Vibrational energy: w, are dissipated into the solvent is pro-
seemed to be necessary to account for the spEttra. portlongl to the magnitude of the solvent’s o%ﬂqunlbrlum)

The goal of this article will not be to rationalize the fluctuations at frequency,. But what of rotational relax-
rotational spectroscopy of dissolved hydrides. We defer sucAtiOn? Though it seems not to have been widely applied, the
specific spectroscopic predictions to a future arfidlevhat ~ 9enerality of this result suggests that there should be an
we would like to do instead is to look at the more fundamen-a”alogous principle for rotational dynamics. One of the goals

tal issue, the length of time a rotational quantum state calgf]c th's_ art:(cle IS tol shr?_w that da flugtL:jat|c()jn—d|SS|patr|]on rela—f
maintain its identity in a liquid. In particular, we would like tionship of precisely this sort does indeed govern the rate o

o nderstand e et whih oaonel enrgy rfves ST ) AL e e e ey
the rate at which a liquid induces inelastic angular- . . S . qut

chanical relaxation by delving into the microscopics of the
momentum-state to angular-momentum-state quantum tran; ~ . . A .

. : classical rotational friction. To be specific, at the same level
sitions. There has never been a direct measurement of suc N . - Lo -
rotational energy lifetimesT(; valuesg in the liquid-state, so Of approximation useAd In defining the vibrational friction,
' this rotational friction»,q(w) is

a quantitative prediction might be of some use in its own

right. More to the point, though, seeing the way that these . N

well-defined quantum mechanical energy levldth spac- ol @) = 0 dtcoswt (1), (143
ings on the order of hundreds of ¢ manage to persist in

a liquid makes it natural to wonder about the parallels be-  7rof(t) = (1/2) B(N(t)-N(0)), (1.4b

tween the fates of rotational and vibrational states in liquidsyhere N is the torque exerted by the solvent on a solute
Will the time scales and molecular mechanisms relevant tQynose orientation is held fixed;32so we shall first need to

rotational population relaxation have any resemblance t¢nake a connection between the quantum mechanical
those seen in the much more familiar case of vibrationatotational—state to rotational—state transition rate and this
population relaxatiorf?2* quantum mechanical torque autocorrelation function. We
As is well known, the basic phenomenology of vibra- then need to find a route—in practice a classical mechanical
tional population relaxation rates in liquids is describedroute—to computing and analyzing this correlation function.
rather accurately by Landau-Teller theory, a result easily  Aiding us considerably in this endeavor is the fact that it
understood as a straightforward application of Fermi'sis possible to understand rotatioftal’ (and vibrationaf*—3"
golden rule?>?425 A harmonic vibration with frequencw, friction in terms of the instantaneous normal mod@évis)
and reduced magsis predicted to undergo a transition from of the liquid®3° The INM perspective is that the compli-
guantum state to quantum state— 1 with a rate cated collective dynamics of the solution can be resolved
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into microscopically well-defined contributions from har- 27 w

monic modes spanning the natural frequency range of the Aim(R)= JO d¢f0 desiné Yiu(0,4)V(6,¢,R).

liquid (its “band”). It turns out that not only are frequency- 2.3

domain frictions given reasonably accurately in such a for-

mulation, but the molecular definitions of the modes allowNote that the bath Hamiltonian contains the isotropic (

for a facile analysis of the principal mechanical motions that=0) portion of the solute—solvent interaction—which, in

lead to relaxatiod>3**>-%"Moreover, the very notion of a general, will be neither weak nor slowly varying. However,

band will help us make some interesting distinctions betweeit is the anisotropy of the bath, th&;y(R) coefficients ¢

the microscopic mechanisms appropriate to rotational trans® 1), whose dynamics will turn out to matter.

tions inside and outside of the band. In the absence of any solvent-induced anisotropy, the
The remainder of this article will be organized as fol- solute would reside in a free-rotor quantum stéie),

Itows: In Sec. .II we develop a perturbation theory sunab!e_ for Hllmy=E[Im), E=(#22)1(1+1), 2.4

reating rotational energy—level to energy—level transitions

for the just kinds of liquid solutions that allow for discrete with | andm the quantum numbers prescribing the total an-

solute rotational levels. The resulting rate is then connectedular momentum and its laboratory-fram@xis projection,

at the same level of perturbation theory, to the rotationahndl the solute moment of inertia. In order to ensure that the

friction resolved into separate contributions from each ordegolvent effects are weak enough to kdepnd m as good

of anisotropy in the solute—solvent interaction. Section Illquantum numbers, we will presumably want the average off-

presents both our linearized INM theory and andiagonal (,I’) matrix elements of the anisotropic interaction

instantaneous-pair theory for this anisotropy-resolved fricto be small compared to the correspondifg’( energy
tion, the former for evaluating the friction at frequenciesevel spacings. That is we shall look for

within the INM band and the lattefin both dynamically

exact and nonlinear INM versiongor frequencies beyond (V2 Y<|E—E)|?, (2.59
the band edge. The models and calculational details for our 5 L L
numerical case studies of,Hnd D; in Ar, are described in Vi (R)=(21+1)"*(2I'+1)"
Sec. IV and in Sec. V we present the numerical results we | y
obtained by applying our formalism to these examples. We
Y " XY 3 M (R (2.5b

conclude in Sec. VI with some comments on possible con-

nections with spectroscopic observables. e
V|m‘|/m/(R)E<|m|V||,m,>, (25@
where the brackets in EqR.53 refer to a classical ensemble
Il. ROTATIONAL ENERGY RELAXATION RATES AND average over the liquid configuratioRs Though this condi-
ROTATIONAL FRICTION tion would typically not be satisfied for most molecules in
A. Perturbative treatment of level-to-level rotational liquids,"® the tiny moments of inertia and nearly spherical
energy relaxation in liquids interactions found with KHland D, will, in fact, allow us to

satisfy this condition comfortably.

Assuming then, that Eq2.59 holds, we can define the
esiredl—1' rate constant as the sum over all final, and
0e%verage over all initialm states.

Consider a single linear, rigid-rotor solute dissolved in
an atomic liquid. The key dynamical variables of interest are,
the anglesd and ¢ specifying the solute orientation in the
laboratory frame, so we shall take the remaining degrees
freedom, the center-of-mass position of the solutg, and [
the location of theN solvent atomd&R=(rq,...,ry), to make K =(20+1)"1 2
up our bath. The total Hamiltonian can thus be divided into m=-I
portions corresponding to solute rotatidfyy, bath transla- 54 then calculate it, at least in principle, via Fermi's golden
tion, Hg, and whatever anisotropic interaction there may berule,
between the solute and the solvevit,

1’

2 I(Imal’m' ’ (2-6)

m'=-1'

- - - 2
H=H.o(0.6,0.)+Ha(RR)+V(6,6,R).  (2) Km0 = (2711) 24 Pal(@lVieny o (RO D)
We are only interested in situations in which the aniso- X 8(E,—E; +E,—Eyp). 2.7

tropic interaction is sufficiently weak and slowly varying that

individual rotational states remain reasonably well definecf|
even when the rotor is dissolved. We can therefore safeIY
expand this interaction in spherical harmonitg, (8, ) n

ere|a) and |b) are eigenstates of the bath Hamiltonian
g, andP, is the equilibrium probability of the bath being
the ath state. Moreover since ER.2) tells us that

S J
el J
Vi (R)=2 2 Ajm(RI(Im]Y I 'm’),
V,6R=2 2 Am(RYom(6:9), (2.2 B EVESS
it is possible to rewrite the rate constant in terms of time

with expansion coefficients correlation functions of the anisotropy coefficients
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k|H|I:h_2(2|+1)_1% 2 2 2 <|m|YJM|I/m/> kl—»l’lkl’—>|:[(2|,+1)/(2|+1)]ethﬂll’ﬂ)! (214)

m IM g’ where the prefactor arises from the ratios of the numben of
" states associated with the two energy levels—and to do so
X{m|Y g/l ’m’)j dtexp(iQ 1) we shall need to preserve the proper time reversal invariance
- iQ

X(Aau(DA 1/ (0)). 2.8 f __dte(Agp(~1)Ax(0)
much as in the analogous problem of vibrational relaxation o _
in liquids. The quantity),,, here refers to the transition fre- =exp(—hQ,8)f dte'?(Ayp(1)Aj0(0)),
quency -

_ =1 \psi ’
Q. =(E—E )k, 2.9 where,B—(k%T) with kg Boltzmann’s constant and the
_ _ " temperaturé!

and by expressions such at) we mean the time evolution The approach we shall take here to satisfy these condi-
following the hypothetical pure batftompletely isotropit  tions is to use the technique, familiar in studies of vibrational
dynamics relaxation, of expressing the quantal correlation function in

— : s terms of its real part, and identifying that real part with the
Aju(t)=expliHgt/f)A;u(R)exp —iHgt/A). 2.1
m() MiHgt/)Asm(R)exp( t/f) (210 classical equivalerf® Since for any quantum mechanical
Not surprisingly, the fact that liquids are isotropic on the correlation functionC(t), C(—t)=C* (t)*’

average allows us to simplify these expressions considerably.,

In particular, time correlation functions of the form appear—f dte XA o(1)Ay(0))
ing in Eq. (2.8 must not only be diagonal in bothand M, —

but independent of1*!

(Agm()AT 1 (0))= 833 Sum (As(t)As(0)),  (2.11)
meaning that

=2(1+e ")t f :dte‘“t Re[(As0(1)A0(0))]

~2(1+e*ﬁ93)*1f dte®'Cy(t),

ki =221+ 1)71 > > (Im[Yyyll'm’)?
I mm M whereC;(t) is theclassicaltime correlation function for the

Jth order anisotropy coefficient

8 J e H{Asn(hAn(0) Calt)=(As(t)Ax(0)). (215
or, in terms of standard-3j symbols®! Substituting this approximation into Eq2.12) yields our
' ’ basic semiclassical approximation to the level-to-level tran-
kH,,:h‘zJ dtexp(iQy 1) byFy(J) sition rate
o J ki =4k~ 1+exp(-2Q, B)] *
X(Aj0(t)Az0(0)), (212 * A
@1l 3 112 X 20 bgFi (T Q). (2.16
FirD=335110 o o) ' ~ : :
) Here C,(w) is the cosine transform of our anisotropy corre-
by=J(J+1)(2J+1)/4m. (213 Jation function
Eguation(2.12) is as much as we can say quantum me- (‘:J(w): fwdtcosmcj(t). 2.17)
chanically about our rate constants. However, for most sol- 0

vents we might be interested {superfluid He being an in- Notice that by interchanging and I’ in Egs. (2.16 and

triguing exceptioh*®> we might expect the dynamics of our . )
bath to be rather classical. It therefore makes sense to purs %’13 one can show that we do indeed satisfy E414), the

. . . o étailed balance condition.
some sort of classical or semiclassical approximation to the
guantum mechanical bath correlation function that lies at the
heart of Eq.(2.12. How best to do so has been a subjectB. The role of friction in rotational energy relaxation
which particular features of the quantum problem need to beather apstruse quantities, but they are related rather simply
preservedthe correct short-time limits, say, or the exact be-y the torque autocorrelation function—which, in turn, sets
havior in some special case or othethere are a variety of the rotational friction felt by our solute. To see this connec-

plausible routes, all of which allow us to compute the corre+ion consider the spherical harmonic expansion of the torque
lation function classically and use the result to estimate they, the solute. From Eq2.2)

quantum correlation functiotf=*® Regardless of which av-
enue we pursue though, we shall need to ensure quantum No=— Vo= MA-(R)Y (6
mechanically correct detailed balance, z ¢ % m(R)You(0,6).
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Taking the rotor angles to be fixed at their initial valugs [+1"+J=even, K|l—-I"|<J. (2.22
and ¢, for the duration of the friction dynamics then yields

the correlation function we need for the friction For the particular case we treat in this article, that gf H

in Ar, the situation is even simpler than this general frame-

(N(t)*N(0) )tr0zen-orientation work describes. Our anisotropic solute—solvent interaction
— 3(NA(DNL(O only includes a singld term (J=2), meaning that there is
= 3(N(t)N(0))razen-orientation only a single term, that fod=2 in Eqgs.(2.193 and(2.20.

, . The rotational relaxation rate is thus literally proportional to
23% > MM (As(DAS 4, (0)Y (o, do) the total frequency domain friction
J'm’
ki =8kgTA~ [ 1+exp(— 7y, B)]  F 1/ (2) p(Qy),
XY (00, 60)), (2.23
where the average is over all of the initial conditions. the precise analogue of the Landau—Teller formula for vibra-

Suppose, consistent with the weak anisotropy assumgpional energy relaxatioff?4-2¢
tions of Sec. Il A, we now assume that the dynamics of the Interestingly, these same expressions allow us to give a
solvent anisotropy coefficieni;,(t) are uncorrelated with nice classical interpretation of E¢2.5), our quantum me-

the solute orientation chanical criterion for the validity of our weak anisotropy
N(D-N(O treatment. From Eq$2.2), (2.5b), (2.50, and(2.13), and the
{N(t)-N(0))trozen-orientation liquid isotropy condition Eq(2.11), we know that the mean-
square off-diagonal matrix element is given by
%aJEM > MM(Aj(DA%,,,.(0)) .
J'm’

. (Viy=(21"+1)71 3 byFy(3)(A%(0)).
X(Y3m(00,900) Y3 (60, 90))- =

Since (YymY3y) = (4m) 1855 ym: ., the isotropy of the
liquid, Eq. (2.11), lets us express our results in terms of the
anisotropy correlation functions, E(R.15

However, Egs(2.15 and (2.18) tell us that the average on
the right-hand side is basically th##h component of the
mean-square torque. Hence we can write

- VA Y= Ky (3)(NX(0))y, (2.24
<N(t)'N(O)>frozen—orientation:JZl <N(t)'N(O)>Ju (2.189 < ! J=1 ! ’
with
(N(1)"N(0)),=b;Cy(1). (2.18b Ly
Thus the friction, Eq(1.4b), can be written in this same limit Ky (3)=(21" + 1)‘1F|,,(J)=[J(J+1)]‘1( 0 0 0) :
as a sum over these correlation functions (2.25
- For H, in Ar, then, it is clear that our perturbative analysis
7(t) :;1 70, (2193 |l be valid when the mean-square torque is small compared
to the energy level spacing,
1(1)=(by/2kgT) C, (V). (2.19 (N2(0))<|E,—Ey |2/Ky (2). (2.26

Our semiclassical approximation to the rotational energyrps finding is, in fact, the quantum mechanical analogue of
relaxation rate, Eq(2.16), therefore takes the simple form e ghservation commonly made in interpreting rotational

K. =8kgTh 1+exp—#Q B)] 1 pehavior in liquids: “str.ong_-torque” .quuids Iea}d to a rela-
tively fast onset of diffusive rotational motion whereas

. “weak-torque” liquids have a more free-rotor, inertial, char-

Xgl Fuur () 75(8y1), (220 acter to their rotational dynamié8.

where the angular-momentum coupling coefficieRts (J)
are defined by Eq2.13 and the frequency-domain frictions !ll. INSTANTANEOUS-NORMAL-MODE AND

are just cosine transforms INSTANTANEOUS-PAIR THEORIES FOR
ROTATIONAL FRICTION
7y(w)= fmdtCOSwt 7;(1). (2.21) A Instantaneous-normal-mode theory for rotational
0 friction: Linear theory

Equation(2.20 is the principal result of this article. It points Now that we have a Landau—Teller-like theory connect-
out that in order for our solute to be able to switch from oneing rotational energy relaxation to rotational friction, it is
rotational levell to anotherl’, the solvent must be able to clear that we can explore energy relaxation processes by ex-
generate rotational friction at a frequen@y;, given by Eq.  amining the molecular origins of the frequency-domain fric-
(2.9. The angular momentum considerations inherent in Eqgtion. We can certainly obtain accurate numerical values for
(2.13, moreover, impose the selection rule that a new levethis friction (at least for modest frequencjethrough a mo-

|” is only accessible frorhthrough alth order friction ifX®) lecular dynamics evaluation of the torque autocorrelation
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function, Eq.(1.4).3°3! However, besides simply carrying The spectral densitigs;(w) appearing here are the so-called
out such calculations, we would like to deepen our qualitainfluence spectra of the liquid, the spectra of INM modes
tive understanding by finding out which specific kinds of weighted by coupling constanty, reflecting the ability of
molecular motion are associated with the relaxation of eacleach modex to influence thelth order anisotropy.

rotational level.

One of the more useful routes for pursuing this kind of PJ(w)=<E ()26(w—w,)),
analysis makes use of an instantaneous-normal-rﬂggds)7 @ 35
treatment of the friction. INM theories for vibratioriaf J_ 172 :
and rotationa"*?friction have proven to be reasonably suc- Ca=(by/2) " 9As0/9Ga)g-o-
cessful in this regard, producing values for the frequencylt is the fully molecular definition of such coupling constants
domain friction respectably close to those computed fronthat will allow us to project out the key molecular events in
molecular dynamics and allowing facile partitioning of the rotational energy relaxatioff*3%:37:52
friction into easily interpretable microscopic components.

The rotational friction we need here is actually a little differ-

ent from that computed previously® in that it has to be B. Instantaneous-pair theory and its nonlinear INM

resolved into separate contributions from each order of animplementation

isotropy. Still, the derivation is sufficiently close to our pre-
vious work that we limit ourselves to a brief summary of the
development.

The basic INM idea is that, for short times, the time
evolution of a liquid from an initial configuratioR, to some
configurationR; at timet can be described by a set of col-
lective harmonic modes, the INMS.

The physical picture suggested by this linear INM theory
is that rotational energy relaxation occurs by a kind of reso-
nant energy transfer; a quantum of rotational endiycan
be lost to the solvent if it goes into a bath mode with the
same frequency). Indeed, our experience with vibrational
energy relaxatiorifor which linear INM theory predicts pre-
cisely the same scena)fd suggests that this idea should be
more or less quantitative. However, as with vibrational re-

qu() =2 Ua,jumjllz[fm(t)—rm(o)]: laxation, we also know that this approach can only work
I when the transition frequencies lie within the INM band—
a=1,.,3N+1). (3.)  within the natural frequency range of the liq@ftiThe prob-

) ) lem is that once we get beyond the first few rotational states
Herer;,, is the uth Cartesian componen(=x,y,z) of the iy 1, e quickly cross the band “edge.” For the higher
position vector of thejth atom or independent site in the frequency transitions we would actually expect our Landau—

system. In our particular case, with a diatomic solute in anrg|ier-jike theory to fare rather poorly were we to insist on
atomic solvent, we will want to allow for the collective mo- computing the friction from harmonic solvent modes se-

tion involving not only the solvent atompg=1,...N), but  |scted from within the INM band.
also the center of mass of the soluje=00). The matrices When we were confronted with these same issues in
U(Ro) which define the modes are prescribed by the requiresy,qying high-frequency vibrational relaxation in liquids we

ment that they diagonalize the so called dynamical matriygeq that they did not necessarily invalidate the basic idea
D(Rp), the matrix of mass-weighted second derivatives ofy¢ liquid mode2®531t was conceivable, for example, that the

the potential energy. In terms of our Hamiltonian, E2.1),  gominant relaxation pathway might continue to rely on bath

UT(R-)D(RU(R — w28 . 3.2 modes, but that these modes might be significantly anhar-
[U'(Ro)D(Ro)U(Ro) Jus = w0 32 monic. Alternatively, some suitable nonlinear coupling of a
Djuko=(mM, mk)_llzazHB/&rjMarkv. (3.3y  solute to an otherwise harmonic set of solvent modes might

act to mimic the effects of anharmonic modes, a possibility
Since the dynamics of the modes themselves is harmoni\ﬁ,idew appreciated in a solid-state cont&tOn exploring

we can evaluate time correlation functions just by writing thethe matter in detail, what we found was that the actual
important dynamical variables in terms of them. In particu-mechanism of vibrational relaxation was extraordinarily
lar, we know from Eqs(2.15 and(2.19 that we can com-  simple, making it possible to test both of these alternatives—
pute the friction we need from the anisotropy correlationand to choose between them. To achieve frequencies well
functions C,(t). The linear INM theoryfor the rotational outside the INM band, the relevant dynamics has to be so
friction then arises by assuming that displacements of thgycal that it needs to reside almost entirely in the pair motion

anisotropy coefficients are linear in the modes of the solute and the nearest solv&hi’°3As a result, it is
possible to formulate a fully anharmonic, fully nonlinearly
AJO(t)mAJO(o)JrE (9A301994) g=0 Ault). (3.9 coupled, treatment based on mstantaneous-paiperspec-

tive: each liquid configuration in which the solute and a sol-
d vent form what we called a mutual-nearest-neighbor

:136,53,55; : . .
derivative of theC;(t) correlation functions, and cosine pair’ is regarded as an instantaneous starting point for a

transforming the results yields our desired expression for th@¥0-body, one-dimensional, classical trajectory involving
frequency-domain friction, Eq2.21).551 just the solute and the special solvent. The friction correla-

tion function (there, a force autocorrelation functjoran
ny(w)=(1/2)p3(w) w?. (3.5 then be evaluated by assuming that it is only the forces be-

Substituting in the INM dynamic® evaluating the secon
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tween the pair that drive the relevant dynamics and that aliwo-body force means, similarly, that it manages to encom-
the dynamics does is make those intrapair forces evBlve. pass critical portions of the dynamical anharmonicity.

Can the same kind of instantaneous-pair theory serve to To recover the connection with the liquid’'s instanta-
explain high-frequency rotational energy relaxation? Preneous normal modes, we now take this approximation back a
sumably the same arguments we used to motivate the localitstep. Suppose we continue to insist that the coupling nonlin-
of the high frequency dynamics dédrcesshould still apply  earities are crucial, but we remove all traces of the dynamical
when we switch to considering therqueson a solute. Con- anharmonicities. In particular, instead of employing the exact
sider, in particular, the velocity version of the friction, Eq. anharmonic dynamics of the solute—solvent pair, we can

(2.19 with Eq. (2.15° treat the pair's dynamics as that of a single harmonic, instan-
. : , taneous normal mode—lzinary modé®®® of frequencyw,
73(1)= = (by/2kgT){As0(t) Axo(0))- (3.7 subject to an instantaneous forEg, both quantities being

The anisotropy coefficients, which are closely related to théletermined by derivatives of the pair potentiglr) at the
torques, can be expressed as sums of solute—solvent pétstantaneous configuratiofmnno(0).
contributions as long as the anisotropic potential itself, Eq. Mw?):u”[rj(mnn)()]’ fo=—U'[Tj(mmno]- (3.12

(2.2), is pair decomposable. Hence we can always write
Since the solute—solvent pair now obeys the standard INM
As(R)=2 ay(ro), (3.9 ~ dynamics
J

. Fjmano(t) =T j(mno(0) + (fo/ pw) (1— coswot)
with rjo=r;—ro the vector from the solute center of mass to )
thejth solvent. But, consistent with the vibrational relaxation +(vo/wo)sinwgt, (3.13
discussiort? we expect that for a given liquid configuration with initial velocity v, but the friction is still given by Eq.

R, the markedly short range of theyo(r) functions will  (3.11), what we end up with is a fullyponlinear INM theory

guarantee that this sum will be dominated by a singlebased on this same instantaneous pair perspettive.

nearest-neighbor solvefp¢nn). In the pair language, the analogue of our previous, lin-
Aj0(R)=~ayo(rjnno)- 3.9 ean theory would come by regarding the derivatives

dayo/dr in Eqg. (3.11) as constants, a requirement equivalent
Moreover, whenever that near neighbor is closer to the solute Eq.(3.4). By going beyond this linearity while not allow-
than it is to any other molecule in the systgine., whenever ing for the full anharmonicity of the dynamics, we can test
this solvent molecule is anutual nearest neighbofmnn)],  the extent to which harmonic modes remain a useful concept
we expect that the dynamics of this pair will be governed jusivhen we stray beyond the safe haven of the INM band.
by the intrapair forces. The equation of motion is then simply

AT j(mano™~ W (j(mano): (10 H, AND D, IN LIQUID Ar: MODEL AND
with u the solute-solvent reduced masgy) the isotropic  CALCULATIONAL DETAILS
part of the solute—solvent pair potential, and (r)
=du/dr. Pursuing this reasoning to its logical conclusion,
one also expects liquid configurations with mnn solute—  As we indicated in Sec. |, the large rotational constants
solvent pairs to dominate the configurational average in Egand nearly spherical shape of, ldnd its isotopomers make
(3.7). Configurations with solvents that are near neighborgshem natural candidates for studying the dynamics of dis-
but not mutual near neighbors should have noticeablycrete rotational states in liquids. Though much of the previ-
smaller couplings(inasmuch as their solute—solvent dis- ous experimental and theoretical work to date has focused on
tances are necessarily largeWe should therefore take these molecules dissolved in,®,°-*214in order to make
j(nn)=j(mnn) in Eq.(3.9) as well>*> sure that we understand the fundamentals, we deliberately

Differentiating Eq.(3.9) and substituting the result in limit ourselves here to the more straighforward situation of
Eqg. (3.7) then, gives our instantaneous-pair theory for theH, and D, in Ar, 13
high-frequency rotational friction As with the study of Xiao and Coké?,we shall take the

(0= (by2ksT)((das /dD), Ar—Ar interaction to be of the Lennard—Jones form

— 12 6
X(dapldnyof OF )~ @1y el AT,
Jmnno with the standard parametéfs,c=3.405 A and e/kg
where the average is over the initial values and velocities 0=119.8K, and we shall consider just the single room tem-
the mutual-nearest-neighbor solute—solvent distances and tirature (high-density supercritical thermodynamic state
dynamics is governed simply by E.10. The omission of  with temperaturél and densityp given by
all of the many-body features of the dynamics obviously KT/ e=25 5-0.95
renders this formula incapable of including any of the col- gll€= e, po=L.9o.
lective aspects of rotational relaxation. Yet, because it in- The H,—Ar part of the interaction is well described by
cludes the dependence of the anisotropy coefficiapiér) the Leroy—Hutson potentiaf, the result of a careful fit to
onr, this formula does take into account the important non-spectroscopic, scattering, and thermodynamic data. The par-
linearities in the solute—solvent coupling. Its use of the fullticular version we use here has the bond length fixed at 0.77

A. The model
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TABLE I. Rotational friction spectra for fland D, dissolved in dense supercritical argbn.

Solute k B, (10 22J) Ey (cm™Y) Gy (cm™ 1) Rel. dev’
1 2.12 341.9 257.5

H, 2 0.366 160.9 71.6 0.11
3 0.677 44.3 65.4
1 0.780 298.3 134.9

D, 2 0.173 177.3 7.34 0.10
3 1.69 166.8 231.8

#Parameters for the fits of each friction spectrgpiw) to  times a sum of three Gaussiarns<(1,2,3), with
B, Ex, andGy, respectively, the amplitude, mean, and width of each Gaussian.
PRelative deviation of the fitted spectrum from the simulated spectfut|ps(®) — pgad ©)|/f dwpgard ®).

A. Specifically, the pair potential between the solute withB. Simulation, INM, and instantaneous-pair-theory
center of mass at, and thejth Ar solvent atom(located at ~ calculations

rj) is written in the form Molecular dynamics simulations were carried out on a

Uuy(Foj @) =Up(r o)) + Uy(roj) Po(cOSO)), (4.1 sample _consisting of the_solute and _107 Ar atoms _with the
- trajectories propagated via the velocity Verlet algorithm us-
whererg;=|ro—rj| and ®; is the angle betweefl,, the ing 2.16 fs time step® A trajectory consisting of 1.05
bond axis of the SOlUte, a.n’@j . This form lends itself rather X 107 time Steps was emp|0yed to obtain torque correlation
easily to a spherical harmonic decomposition of the typegunctions. When ordinarylinean INM analysis was re-

assumed in E(2.2). Since quired, 40000 liquid configurations were selected by sam-
2 pling every 108 fs along a trajectory and diagonalizing the
P,(cos®;) = (4m/5) 2 Y’Em(ij)Yzm(ﬁo), dynamical matrix each tim¥. The resulting eigenvalues and
M=-2

eigenvectors were used to construct the frequem@and
the total anisotropic solute—solvent interaction can be writteffOUPling coefficients

V(Qq,R)=2 Uy(rg;)P2(cosO)) ¢, = (15/4m)Y29A1dq,, ,
|

2 for each configuration and each mode Inasmuch as the
E Azm(R Yam(Qo), friction spectrum, Eq.(3.6), is quite noisy in the high-

T frequency region, when we needed to take Fourier trans-
leaving us with a single nonvanishing relevant anisotropyforms we found it useful to fit the real-frequency part of the
coefficient, that forJ=2. spectrum first to the forfit

AgdR) = (4m/5) 2 Ua(Foj) Yoo op)- (4.2 3
' pl@)=w 2, Beexp~[(0—E/G?}.

Because the only that contributes in this model &= 2, we -
shall be able to omit the sum ovérnand theJ indeX in all
of our subsequent equations. The parameters for the fits are given in Table I. The imagi-

To evaluate the friction within our weak anisotropy as-Nary portion of the spectrumu.(;<0) turns out to be rather
sumption then, we need only to evaluate the time correlatio§Mall and, in any case, is irrelevant to energy relaxation at
function C(t)=(A,(t)Ax(0)) with the initial conditions the level of theory pursued in this article. _
and the dynamics governed by the isotropic part of the inter- ~ Instantaneous pair theory calculations require only that

action we be able to evaluate one-dimensional correlation functions
involving the solute and its nearest neighbor. The averaging

over initial conditions for these correlation functions, Eq.

Va(R)=2) Uolro)+ 2 Uyu(rj) (4.3 a

(3.1, was accomplished by first computing the radial dis-
tribution function for the mutual-nearest-neighbor distances
that is, with the solute regarded as a sphere. In fact, even thiased on a sample of 4@ndependent configurations from
expression can be simplified. We note, as did Xiao andhe molecular dynamics simulatigrand then performing the
Coker®® that the elaborateiy(r) function of LeRoy and two-dimensional integral over distance and the velocity us-
Hutsort® is well approximated in practice as a Lennard—ing Simpson’s rule. The dynamics for the fully anharmonic
Jones potential witlr=3.1375 A ande/kg=59.145K. version of instantaneous-pair theory was evaluated by solv-
All of the calculations performed with Pwere carried ing the one-dimensional pair equation of motion, E2j10),
out using precisely the samg(r) andu,(r) potentials as using the velocity-Verlet algorithm with the same time step
those used with Kl as in the many-body simulation.

(J<|<)
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TABLE II. Validity of perturbation theory for H dissolved in dense supercritical argon.

(1,12 2,0 (3,9 4,2 (5.9 (6,9 (7,9 (8,6)
(V) IAEy)® 0.049 0.019 0.011 0.0076 0.0056 0.0044 0.0035

#Total angular momentum quantum numbers for each pair of rotational energy levels considered. Only pairs
with Al==*2 are connected by nonzero matrix elements of the Hamiltonian.

bRatio of ;. , the root-mean-square average of the matrix element coupling each pak, te=E,— E,  , the

gap between the isolated-molecule energy levels of the pair.

V. H, AND D, IN LIQUID Ar: RESULTS cording to Eq.(2.22), are those for whichAl|=2]. Follow-
ing the dictates of Eq(2.5, we compare, in Table Il, the
matrix elements coupling various pairs of levels with the
The first issue for us to confront is the level of accuracygas-phase energy level spacing between the levels. Since the
we can expect from our weak coupling theory. The entirematrix elements are identical for,Hand D, (because they
development in the article relies on our somewhat counterdepend only on the solute-solvent potentighile the energy
intuitive claim that the dynamics of a liquid surrounding a spacings differ by a factor of Zbecause of the differing
spherical solute is all that is necessary to understand the rgnoments of inertig the coupling-to-energy-gap ratios are
tation of a diatomic in a liquid(or at least is all that is twice as large for B as they are for K. However even with
required for the limited class of systems considered)h&® D, the ratio is well within the realm one would expect for a
just how reliable is this assumption? valid perturbative treatment. Evidently hydrogen in Ar can
The criterion we put forth for the validity of the quantum pe thought of as a prototypical weak-torque situation in the
perturbation theory, Eq(2.5), is something we can check sense of Eq(2.26.
directly for any pair of rotational energy levdland|’ that The second key step in our theory, though, was to write
our solvent might induce a transition betwefmhich, ac-  down a weak-coupling version of the classical friction. It is
not out of the question that our perturbation criterion could
be satisfied without the anisotropy coefficients being as un-

A. Exact and weak-coupling relaxation rates

%107 correlated with the solute orientation as we assumed, but
2.5 — T here again, we can perform a direct test. In Fig. 1 we plot the
D - — exact exact rotational friction obtained by simulating the torque
@ 20 H K i autocorrelation function, Eq1.4b), and compare the results
C?O 15 2 weak coupling with the weak-coupling friction, Eq.2.19 with Egs.(2.15
= ’ ] and (4.2). Note that the exact friction uses the full LeRoy—
~ 1.0 — Hutson potentiaf in order to evaluate the time evolution of
é ] the torque, whereas the weak-coupling version calculates the
= 05 m dynamics from just the isotropic portion of this potential, the
0.0 o] ug(r) in Eq. (4.2). Despite these differences, the two ver-
0 200 400 600 800 1000 sions are obviously barely distingui;hable on the scale _of the
1 graphs, both for K and D,. Repeating the weak-coupling
107 w/2nc (cm ) calculation with the Xiao—Coker Lennard—Jones version of
X 25 . ug(r) (not shown yields results almost identical to those
T | | exact from the LeRoy—Hutson weak-coupling treatment. We shall
20
H .
L T D T weak couplin
« 1.5 D2 PTing 0.07 . . . . .
-] _
= 10 B 0.06 | .
. ~~
=) . ~ 005 — —
\8/ 0.5 — il 0.04 [« ]
= 1 = T ]
0 200 400 600 800 1000 o, 0.02 — _]
-1 - ]
®/27c (cm ) 0.01 = 7]
O'OO 1 | L | 1 I 1 | 1
FIG. 1. The rotational friction felt by k(top panel and D, (bottom panel 0 10 20 30 40 50

dissolved in dense supercritical Ar. Each panel compares the exact friction

(defined in terms of the classical torque autocorrelation fungtiath the 1

weak-coupling friction(derived from the classical anisotropy autocorrela-

tion functions. Both correlation functions are evaluated by molecular dy- FIG. 2. The angular-momentum-coupling coefficieRts_,(2) as a func-
namics, but for the former the dynamics is based on the full LeRoy—Hutsoriion of |. Through leading order in the anisotropy of the solute—solvent
potential for the solute—solvent interaction, whereas for the latter only thepotential, these F's are the coefficients governing Ithel —2 rotational
isotropic part of the LeRoy—Hutson potential is used. transitions induced in a homonuclear diatomic solute.
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TABLE Ill. Rotational population relaxation rates for,Hlissolved in dense supercritical argon.

QO/2mc

1" —1 (cm™) MD°® Linear INM® 1P Nonlinear INM'  k_, /k;/_,
250 341 0.28 0.43 0.19 0.27 0.97
351 569 0.14 0.17 0.12 0.12 0.15
42 796 5.%10°? 1.4x10°2 5.0x10°? 3.8x107? 3.9x10°?
53 1024 1.%10°2 2.3x10°* 1.8x1072 1.6x10°2 1.1x10°2
6—4 1251 4.&10°8 8.4x 1077 6.1x1073 6.1x10°3 3.5x107°
7—5 1479 1.410°3 6.6x10°1° 1.9x10°2 2.0x10°3 1.1x10°8
8—6 1706 4,104 1.1x10°%3 5.9x10°4 6.9x10°* 3.6x1074
97 1934 1.4104 3.8x10°18 1.8x10° 4 2.5x10°4 1.2x10 4

10—8 2161 6.8<10°° 2.9x10° %3 5.2x10°° 1.1x10°4 3.8x10°°

3Transition rates, |, for the downward transitions from energy levéb energy level’, reported in pst. The
corresponding rates for the upward transitions are prescribed by the detailed-balance ratios given in the last

column.

PTransition frequencie§) = (E, —E, )/#% with the E, the isolated-molecule energy levels.

Evaluation of the perturbation theory result by exact
theory.
YEvaluation of the perturbation theory result by pair t

molecular dynamics simu{didh and by linear INM

heories: “IP” denotes the full instantaneous-pair theory

and “nonlinear INM” refers to the IP approach with the pair dynamics treated by INM theory.

therefore be able to make use of the computationally simpleshows that goes smoothly from its lowest possible value of
Xiao—Coker potential for all of our subsequent calculations.1/30 (for the 2—0 transition to 1/16 (as|—©).

Given that our basic result for the relaxation rate, Eq.

What must be the principal determinant of the rotational

(2.20, seems to be sensible, it is natural to ask which ofenergy relaxation rate then, is the rotational friction itself. As
factors in this expression actually end up controlling the rateone can see from the tabulated level-to-level transition rates

Focusing specifically on Hand D, in Ar [and therefore on
Eqg. (2.23], it is clear that the detailed-balance prefactor,

[1+e A7,

is going to be a rather slowly varying function of the transi-
tion frequency(},;» under ambient conditions. The angular
momentum coupling coefficients;,(2) will be important in
limiting the allowed transitions to those for whith=1=2,
[Eq. (2.22]. However for the transitions which are allowed,
explicit calculation tells us thaf,;/(2) will be a similarly
slowly varying function of the transition frequenckig. 2).

A glimpse at this figure, or equivalently, at the expression

derived from the analytical formula for the Bsymbol®?
Fii—22)=[lI(1=1)/421+1)(21 - 1)],

TABLE IV. Rotational population relaxation rates for,

for H, (Table Ill) and D, (Table IV), the rates drop by sev-
eral orders of magnitude as one progresses through the first
nine allowed transitions—precisely as we would have ex-
pected from the behavior of the friction portrayed in Fig. 1.
We turn therefore, to considering the molecular origins of
this friction.

B. Linear INM analysis

Within linear INM theory, Egs(3.5 and(3.6), the fre-
quency dependence of the rotational friction arises mainly
from the shape of the corresponding rotational influence
spectrum, Fig. 3153 As is now familiar from our studies of
solvation and vibrational relaxatioR;3"*?as well as from

Missolved in dense supercritical argbn.

Q/27cP

- (cm™b MD°® Linear INM® =% Nonlinear INM Ky Ik
20 171 0.51 0.70 0.29 0.25 2.2
351 285 0.38 0.62 0.28 0.39 0.59
42 398 0.23 0.28 0.18 0.19 0.27
5.3 512 0.12 5.5%10°? 0.10 7.9<107? 0.13
6—4 626 54102 7.0x10°3 5.4x 1072 4.3x1072 7.1x10°2
7—5 740 2.%107? 6.6x 1074 2.7x107?2 2.4x 1072 3.9x1072
8—6 854 9.8¢10°° 4.1x10°° 1.2x1072 1.2x10°2 2.2x107?
97 968 4.1x10°° 1.6x10°6 5.7x1073 5.9x10°3 1.2x10°2

10—8 1081 1.x10°° 3.8x10°8 2.6x1073 2.7x1073 6.8x10°°

Transition rates, ., for the downward transitions from energy levéb energy level’, reported in pst. The
corresponding rates for the upward transitions are prescribed by the detailed-balance ratios given in the last
column.

PTransition frequencie§ = (E,—E, )/#% with the E, the isolated-molecule energy levels.

“Evaluation of the perturbation theory result by exact molecular dynamics simu{didh and by linear INM

theory.

YEvaluation of the perturbation theory result by pair theories: “IP” denotes the full instantaneous-pair theory
and “nonlinear INM” refers to the IP approach with the pair dynamics treated by INM theory.
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FIG. 3. Normalized rotational friction spectpdw) = p,(w) for H, and D, 8 ' .,"" |
dissolved in dense supercritical Ar. Shown for comparison is the B 0.0 e A T |
instantaneous-normal-mode density of states for the solubgm), also = :
normalized to unit area. As is conventional, imaginary frequencies are plot- -200 0 200 400 600 800 1000

ted as negative frequencies. In this and all of the succeeding figures, the
solute—solvent interaction is modeled with the isotropic Xiao—Coker poten-
tial.

w/27mc (cm'l)

FIG. 4. Various projections of the rotational friction spectrum for dts-

solved in dense supercritical argofiop panel partitioning between the
center-of-mass translation of the Eolute(CM) and the motion of Ar atoms
(solvenj. Middle panel partitioning between longitudinél ) and transverse

fl tra | iabl hasi hiah | b (T) solvent dynamicsgi.e., motion parallel and perpendicular to the solute-
uence spectra invariably emphasize higher valueso center-of-mass/solvent vector, repectiyelgottom panel comparison be-

than the solvent’s density of statd30S) does. In particular,  tween the component arising from the nearest-neighbor solreatestand
the (w?<0) imaginary frequencies, which comprise a sig- the total friction spectrunitota)).

nificant fraction of the DOS, make only a miniscule contri-

bution to the influence spectrufand no contribution what-

soever to the level-to-level transition rates—which inVO"’ealong with the motion of all of the solvent atoms. this same

the fnr:;tlon. onrl1y at certain Q'SUEte, reaI.I;equenmes hhigh frequency dynamics must be present in the original den-
T ere f'ls’ OWEVEr, an mteres::ng di eLence between t %ity of states. But since it corresponds to just a few degrees

present influence spectra and others we have studied. In gft 'freeqom, it is invisible against the background created by

of the previous work, the emphasis on higher frequencieg,e macroscopic number of solvent degrees of freedom. In

took the form of a shift in the frequency of theaximum 0 jnfluence spectrum, by contrast, the background comes
solvent response with little, if any, change in the overall

spectral range of that response. This kind of behavior is a

natural consequence of the fact that it is the INM bands that

define the natural frequency range of intermolecular motiomABLE V. Mechanism of rotational relaxation for-and D, dissolved in

. . . ..dense supercritical argén.

in our solvents. Figure 3, though, seems to have the majority

of its friction spectral density lying outside the INM band.

So, where does this new high-frequency response come Solute

from? H,
The answer becomes apparent if we project out of the p,

influence spectra the portion arising from the center-of-mas

motion of the solutéFig. 4). It is clearly the net translation #Percentage contributions of the indicated dynamical processes to the total

. e . tational fricti trum.
of our very light solutes that generates the bulk of the h|gh1nr° gona o o Specium

' ) Partitioning between motion of the solute-center-of-mass and solvent trans-
frequency response predicted by linear INM the®ma cal- lational motion.

culation of the areas under the projected spectra reveals th%artitioning between solvent motion paralifgingitudina) and perpendicu-
center-of-mass translation actually generates on the order d’fr (transversgto the instantaneous solvent/solute-center-of-mass vector.

0 . . . artitioning between solvent contributions arising from the solvent atom
90% of the _entlre respon@gble V). Interestingly, since our instantaneously nearest the solute center of mass and all of the remaining
bath does include the motion of the solute center of massolvent atoms.

our previous work or(classical rotational relaxatiori® in-

Solute

center of mads Longitudinaf Nearest solvefit

94.4
89.2

92.2
92.5

82.8
82.3
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0.025 Q within the INM band(being careful to include the solute—
> translation portion of the bandiINM theory seems to nicely
= 0.020 capture—and explain—the falloff of the relaxation rates with
‘e 0015 increasing rotational quantum number.
-
é 0.010 C. Instantaneous-pair and nonlinear INM analysis
= 0005 Further inspection of Tables Ill and IV makes quite clear
0.000 ‘ that linear INM theory doesot suffice once one enters or
200 400 600 800 1000 goes beyond the upper edge of the INM band. Fer the
w/27C (Cm_l) predicted rates for transitions with frequencies larger than or

of the order of 800 cm' are far too small, as are the, Bates
for frequencies above 500 ¢rh These results are, of course,
precisely in line with our comments in Sec. Il B: once the
density of INM modes at the relevant frequency becomes too
low, the one-quantum-of-solute-to-one-quantum-of-solvent
resonant energy transfer mechanism embodied in linear INM
theory no longer provides the fastest route to relaxation.
The mechanistic information we gathered from our lin-
ear INM investigations, however, continues to be worth lis-

200 ‘ 400 - 600 800 1000 tening to even when we are well beyond the INM band edge.
-1 The strong reliance we found on the one-dimensional motion
®/2nc (cm ) of a key solvent partner suggests that the instantaneous-pair

FIG. 5. Comparison of linear instantaneous-normal-mid®1) predictions theory discussed in Sec. Il B mlght very well be worth try-

for rotational friction with exact molecular dynamics resuMD) for both ing. While we know that a pair theory ?ann_Ot_ capturg any of
H, and D, dissolved in dense supercritical Ar. The open symbols mark thethe collective character of the relaxation, it is possible that

transition frequency for each allowéd-| -2 rotational transitiorthe iden-  the ability to incorporate both anharmonic dynamics and
tity of which is indicated directly above the symhol nonlinear coupling might more than make up for this defi-
ciency at these high frequencies. The results for shown
in Table Ill and in Fig. 6, bear out these expectations. The

solely from those few solvents close enough to the solute tinstantaneous-pair theory predicts rates in excellent agree-
be able to create a significant torque. ment with molecular dynamics—and consistently better than

We can refine our ideas about the mechanism of rotathose of linear INM theory. In fact, the pair theory agrees
tional energy relaxation still more by imagining sitting in the quantitatively with molecular dynamics results spanning
solute’s own reference frame and watching the solvent atomsome three decades in relaxation rates, Fig. 7.
move with respect to the solute. From this perspective we  This numerical superiority to linear INM theory is actu-
know that what we still need to specify in order to define theally revealing. For frequencies well inside the INM band
mechanism is the geometry and numbersofventatoms  (less than 200 citt), the linear INM predictions for the fric-
most critically involved in the dynamics. We can collect this tion are significantly better than the pair thegRig. 6), just
information as well via suitable projections of the influenceas we found in our previous studies of vibrational
spectrum(Fig. 4 and Table ¥.*? The results now look strik- relaxation>® Indeed, inside the band, the instantaneous-pair
ingly similar to our previous findings for solvation and for rates fall well below the exact results since a pair theory
vibrational and rotational relaxation with much heavierlacks the ability to represent collective dynamics. However,
solutes®23336:37.53\ore than 90% of the influence spectrum the only frequencies relevant to the rotational transitions of
stems from longitudinal solvent motion—from motion paral- H, fall outside the band of the neat solvent, so these collec-
lel to the instantaneous solute-center-of-mass/solvertive dynamics are never needed. Supporting evidence for
vector—and nearly 83% of the spectrum arises from thehese ideas is also found in the relaxation rates af Table
single solvent atom in each configuration that is nearest th&/ and Fig. 7. The instantaneous-pair-theory continues to
solute center-of-mass. In the language of the original laboraagree nicely with molecular dynamics outside the liquid
tory frame, then, we would say that the key event in theband. With the lower rotational transition frequencies gf D
relaxation process almost always consists of the solute mowhough, the first few transitions now fall inside the band—
ing directly towards a single key solvent atom. and as we would have expected, are somewhat better de-

The linear INM theory should not only be useful for scribed by linear INM theory than by instantaneous-pair
assigning the mechanism, it should be reasonably accurate theory.
predicting the rotational frictioit and thus the actual rota- We could, of course, be content with this agreement, but
tional energy relaxation rates. Indeed, as one can see froinis telling to consider what would happen to these pair
Fig. 5 and from Tables Il and 1V, the predicted values of theresults if we no longer insisted on an anharmonic treatment
rotational friction track those of the exact molecular dynam-of the dynamics. That is, suppose we were to adopt the non-
ics quite adequately for the first few allowed rotational tran-linear INM theory put forth in Sec. 1l B: we allow the pair
sitions. As long as we are considering transition frequencietorque whose evolution we are studying to depend on the
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) o ) o ) FIG. 7. Exponential-gap-law behavior for rotational energy relaxation rates
FIG. 6. Pair-theory predictions for the rotational friction of Hissolved in of H, and D, dissolved in dense supercritical Ar. The molecular dynamics

dense supercritical Ar. Both panels compare the instantaneous-pair theo{¥ip) and instantaneous-paifP) predictions for the rate constants of the
predictions(IP) with molecular dynamicéMD) and linear INM predictions. 5| = —2 rotational transitions are shown as a function of transition frequen-

The bottom panel examines the high-frequency response in more detail angag ang compared with the empirical exponential-gap-law predictions
compares all three predictions with the results from a nonlinear INM re”di'(long—dashed lingsobtained by fitting to the MD results. Open symbols

tion of the pair theory. Note the fifty-fold magnification of the vertical scale 1,5k the transition frequencies for each allowed transition.
in the bottom panel. As in Fig. 5, the open symbols mark the transition
frequencies for the indicatdd-1—2 rotational transitions.

terestingly, they all seem to be surprisingly well insulated
from one anothet®
As a final comment, we should note that all of these

pair separation in .its exact_, fully no_nlinear, fashion, bUt. We alculations end up leading to fundamentally the same kind
now regard the pair dynamics as being controlled byasmgl%f result, that rotational energy relaxation rates in liquids

INM harrt?lonllct: gnode."Physmt:alllyi, this apﬁ)tro;:]lch is hardly l.m'.obey the same kind of exponential-gap-law they tend to in
reasonabie. asically postuiales a muitiphonon scenario 1f, gas phas®.That is, for all but the lowest transitions, Fig.

which the nonlinear solute—solvent coupling generau_as OVer 4 olls us that it is fairly accurate to write
tones of the solvent INM modes and these harmonics then
account for the high-frequency relaxativit*®> Nonethe- ki1 =koexp(—|Qy/|7), (5.7)

less, one could wonder about the internal consistency of S“C\nith ko and r constants. The frequency dependence of our

an approach. In effect it says that the same anharmonicitgasic expression for the transition rate, E8.23, might

that is unimportant for the underlying solute—solvent dynam'seem unlikely to yield such a dependence on the transition

ics is vital for the solute—solvent coupling being driven byfrequencyQ, but as we noted earlier, both the detailed-

that Qynamics. Sp can it, in fact, lead to a sensible picture of o ance factor and the angular-momentum coupling factor

rotational relaxation”? o ) are nearly constant at high frequencies, leaving the bulk of
From the out_come of this kind of nonhngar INM t_reat- the frequency dependence in the friction. As with our previ-

ment presented in Tables Il and IV and displayed in the, s examination of vibrational frictiof?, we indeed do find

bottom panel of Fig 6, it is clear that we do not need g hircaly that the asymptotic form of our friction is expo-
include the dynamical anharmonicity in order to “”derSta”q'nentiaI

rotational friction. Nonlinear INM calculations produce tran-

sition rates in excellent agreement with both the full  7(@)=noexp—w7).

instantaneous-pair theory and the exact many-body molecysmysingly, the values of that leads to the best fits to our
lar dynamics in the high-frequency regime. In fact, takenmglecular-dynamics-derived friction are on the order of the
together with the linear INM theory for relaxation occurring characteristic nonlinear time scalgsfound from our previ-

within the INM band, it is evidently possible to give a qyg jnstantaneous-exponential formulation of nonlinear INM
harmonic-mode interpretation for the complete range of rOtheory

tational transitions. There clearly are a variety of different 5 1o
places that anharmonicity can enter this problem—and, in-  to=(2u/agkgT) ™,
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ao:/_ng/foz —(dInu’(r)/dr), the underlying molecular mechanisms. Projection of the
INM influence spectrum reveals the essentially few-body
character of the instantaneous relaxation mechanism, with
the key step the longitudinal motion of the kbr D,) center
of mass relative to a single near-neighbor solvent atom. The
INM treatment of the solution automatically suggests, more-
over, that there really is a band of collective motions span-
ning the liquid’s own natural time scales. Indeed, our linear-
VI. CONCLUDING REMARKS ized INM theory takes this idea sufficiently literally that it

It would not have been unreasonable to presume thdfterprets a Landau—Teller law as prescribing a 1:1 energy
how a liquid extracts a solute’s vibrational energy would fansfer between the solute and these liquid modes, leading
have little to do with how it removes rotational energy. The(© @ prediction that relaxation rates should decay rapidly for
degrees of freedom themselves just seem to be fundamefansition frequencies outside the band. o
tally disparate. From a classical perspective, vibrational en-  BOth the basic predictions for the rotational friction and
ergy is constantly interconverting between kinetic and potenth® Precipitous fall-off of relaxation rates are confirmed rea-
tial energy while the rotational energy of a free rotor is sonably well by r.nolecu.lar dynamics. The m.echanlstlc ideas
always kinetic. Quantum mechanically, the low-lying energy@re acFuaIIy confirmed in even greater deta|l_ by the success
levels for most vibrations are nearly equally spaced, meanin§f the instantaneous-pair model for the rotational energy re-
that vibrations tend to have a single fundamental frequenc;)a?‘xat_'on rates. Relaxation rates for all but the lowest few
whereas rotational energy level spacing increases monotorfiotational transitions obey an exponential gap law, a law re-
cally for linear molecules. Worse still, the kinematics andProduced strikingly well by the one-dimensional pair dynam-
symmetries of the two kinds of motion are about as differenicS predicted from the isotropic part of the solute/mutual-
as one could imagine. It is easy to imagine that solventdiearest-neighbor-solvent interaction. The agreement with
might very well need to interact with the two degrees ofmolecular dynamics could probably be improved a bit by
freedom quite differently. employing the full anisotropic interactiofas we did in our

What this article has shown, though, is that molecularevious vibrational studigs® but the critical molecular de-
rotations with well-defined energy levels seem to relax intails are clear. We can even interpret this outside-of-the-band
ways remarkably close to those of vibrations. Most notablybehavior as a multiphonon extension of instantaneous-
rotational energy relaxation obeys ratational Landay  normal-mode ideas. The high-frequency results are well re-
Teller relationin precise analogy to the relation obeyed by produced by regarding the pair dynamics as a single har-
vibrations: the rate of level-to-level relaxation is proportionalmonic mode, provided we allow for the fully nonlinear way
to the frequency-dependent friction exerted by the solvenin Which the dynamics of the torque depends on the mode.
evaluated at the frequency of the transition. That rotationall his nonlinearity is evidently sufficient to generate the high-
energy relaxation obeys some sort of fluctuation-dissipatioffequency overtones necessary for resonant energy transfer.
theorem is hardly a surprise; what may not have been quite It is probably worth emphasizing that all we have done
so obvious is that the solvent fluctuations that turn out ton this article is to look at rotational-energy-level-to-
govern the dissipation of rotational energy have such a closeptational-energy-level transition rates. While our findings
analogy to the ones controlling vibrational energy. Both, incertainly bear on a variety of spectroscopic studies of hy-
particular, are controlled by precisely the same friction thaidrides in solution, none of these results correspond to direct
governs the regression of their respective velocities. Admitexperimental measurements. We would therefore like to
tedly, the rotational friction spectral densities we computecclose with a few comments on possible connections with
in this article have a spectral range well beyond what we arexperiment. Perhaps the conceptually simplest experiment
used to seeing for vibrational relaxation in aprotic pertinent to our calculation@lbeit the most difficult to carry
solvents®®3"¢8The differences, though, come from the un- out) would be a pump-probe measurement of rotational
usually low molecular weight of our solutes. When we com-population lifetimes analogous to the familiar studies of vi-
pute the vibrational friction spectral density fop Me find a  brational population relaxatiof.For systems with optically
result virtually identical to that for the rotational fricti6i.  allowed rotational transitions, such as HCI, one could create
Both frictions are dominated instantaneously by the sama specific nonequilibrium distribution of rotational states
few-body dynamics, so the solvent presents largely the samaith a short(but not ultrashopt IR pulse and then use the
spectral density to both vibrational and rotational motid®.  absorption of a second IR pulse to watch the populations

The fact that we were able to convert the problem ofrelax. Examining the dipole—forbidden transitions ip &hd
rotational energy level lifetimes into a study of classical ro-D,, though, would require a somewhat more involved ap-
tational friction is what really gave us this insight into the proach.
origins of the spectral density. With this relationship we As the particulars of the experiment change, so would
found that we could use molecular dynamics simulations tahe perspectives we would obtain on the relaxation dynam-
obtain exact answer@xact, at least, within the basic weak- ics, but some rough indications of the time scales to be ex-
coupling framework of this artice More than that, though, pected might be useful. Just as in vibrational
the relationship allowed us to use instantaneous-normakpectroscopy®°a standard Kubo treatment predicts that the
mode analysis of the friction to propose an interpretation ofnverse lifetime for a rotationdtansition I—1" is the sum of

where the instantaneous frequenay, and instantaneous
force f, are defined by Eq3.12). Average values df, were
found to be 21 and 29 fs for Hand D,, respectively, in
reasonable accord with thevalues of 29 and 41 fs we found
from our fits to the molecular dynamics restfifs.
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80

' ' band, but the B transitions lie deeper within the band. Un-
fortunately, testing even these basic findings will be difficult
until direct lifetime measurements become available. Still, it
I is interesting to wonder about the implications of this work
for more conventional rotational Raman and absorption
spectra111314The linewidths for such spectra will depend
not only on the rates of population relaxation, but also on the
rates for pure dephasing, so we will therefore need to defer
; for a future article any quantitative predictions for such
o spectre?? Such issues notwithstanding, it is tempting to
g speculate that one of the reasons that DCI peaks are more
difficult to see in the far-IR spectra of gBolutions than HCI
peaks®®is because DCI has smaller transition frequencies
and therefore undergoes much more rapid population relax-
1 ation. Similarly, one might hazard a guess that the tendency
FIG. 8. Predicted population-relaxation lifetimes for individual rotational for the HCI peaks to become progresswely_ better resolved as
energy levelgl) of H, and D, dissolved in dense supercritical Awith the one proceeds from Ar to Kr to Xe SOIUUOWS'S due, at least
lifetimes defined as in Sec. YIThe lines connecting the open symbols are in part, to the progressive shrinkage of the solvent’s band-
drawn merely to guide the eye. width and the concomitant diminishment of population relax-
ation rates. We look forward to seeing these conjectures
studied in greater depth, both experimentally and theoreti-
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quantities we can think of as inverse lifetimes for the twoC@lly-
rotational levels. In particular, for a rotational energy lelvel
that _inverse lifetime is just the sum of the rate constants foh ckNOWLEDGMENTS
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