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Rotational energy relaxation of individual rotational states in liquids
Joonkyung Jang and Richard M. Stratta)
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~Received 8 June 2000; accepted 11 July 2000!

The manner in which most molecules reorient in liquids bears little resemblance to the process in the
gas phase. For small-moment-of-inertia species such as the hydrides, however, the observation of
discrete spectroscopic lines corresponding to individual isolated-molecule quantum transitions
suggests that one is actually seeing single-molecule dynamics perturbed only weakly by the
environment—just as one sees with solution-phase vibrational behavior. We examine here the
degree to which such individual rotational quantum states remain well defined in liquids by
considering the rates of discrete energy-level-to-energy-level transitions in solution. For rotational
quantum states that do preserve their free-rotor character in a liquid, we find that the transition rate
between angular momentum states obeys a rotational Landau–Teller relation strikingly similar to
the analogous expression for vibration: the rate is proportional to the liquid’s rotational friction
evaluated at the transition frequency. Subsequent evaluation of this friction by classical linearized
instantaneous-normal-mode theory suggests that we can understand this relationship by regarding
the relaxation as a kind of resonant energy transfer between the solute and the solution modes. On
specializing to the particular cases of H2 and D2 in Ar~l) , we find that the most critical modes are
those that move the light solute’s center of mass with respect to a single nearby solvent. This
observation, in turn, suggests a generalization of instantaneous-normal-mode ideas that transcends
both linear coupling and harmonic dynamics: an instantaneous-pair theory for the relaxation of
higher-lying levels. By employing a linearized instantaneous-normal-mode theory of relaxation
within the liquid band and an instantaneous-pair theory for higher-frequency relaxation, we find that
the resonant-transfer paradigm is reasonably successful in reproducing molecular dynamics results
spanning a wide range of different rotational states. ©2000 American Institute of Physics.
@S0021-9606~00!50138-X#

I. INTRODUCTION

There are comparatively few examples of molecules
whose discrete rotational quantum states survive immersion
in a liquid. The isolated-molecule energy level spacings are
not only typically far smaller than the thermal energy, the
violent torques exerted by a solvent make for relaxation rates
rapid compared to rotational periods. The end result is that
straightforward spectroscopic measurements of reorienta-
tional dynamics in liquids will rarely see anything besides
some sort of generic rotational diffusion. Most fluorescence
depolarization experiments, in particular, tend to provide
little in the way of microscopic insight into the processes by
which rotations come to equilibrium in liquids. It is not that
the values of the diffusion constants obtained from such ex-
periments do not carry any molecular information; recent
studies have emphasized that simple theories portraying the
solute as a featureless sphere~or ellipsoid! in a homogenized
continuum will not always work,1 and even when they do,
they may need a fairly careful representation of the solute
charge distribution to do them justice.2 What we can say,
though, is that the potentially interesting mechanical details
of the solventdynamicsare invariably obscured by diffu-
sional motion.

The molecules that do fall into the select category of

exhibiting quantized rotation in liquids, however, offer us an
intriguing spectroscopic window into how gas-phase quan-
tum dynamics can be altered by a liquid environment.3–15To
a certain extent, this same information is revealed by experi-
ments that follow the rotational behavior of gases as a func-
tion of increasing density.16 But, unless the separate spectro-
scopic lines from individual rotational states persist into the
liquid phase, these studies run out of information just when
they reach the regime we would like to understand.5

The solutes we would like to focus on here are the hy-
drides, the molecules with the smallest moments of inertia,
and thus the largest rotational energy level spacings:
H2 , D2 , and HCl, for example.3–14 It has been known for
quite some time that solutions of dihydrogen,9–11,13,14 the
hydrogen-halides,3–8 and ammonia6 ~and their deuterium
substituted analogues! all exhibit clear remnants of gas-phase
rotational energy levels in their infrared~IR!, far-IR, or ro-
tational Raman spectra, at least under certain conditions. In
fact, part of the motivation of this work is the recent atten-
tion devoted to the spectroscopy of solutions of H2 and
D2.9–14State resolved rotational-Raman spectra of these spe-
cies have now been measured in supercritical CO2,9 and in
both liquid and solid H2O.10,11,14Yet the details of the earlier
studies, the line shapes and even the conditions under which
one should expect to see discrete spectral lines, remain
poorly understood. The first far-IR studies of HCl and DCl in
SF6~l) displayed well-resolved peaks for theJ→J11 HCla!Electronic mail: richardIstratt@brown.edu
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rotational transitions,3 but only the rotational Raman spec-
trum ~looking atJ→J12 transitions! shows the correspond-
ing peaks for DCl.8 Far IR studies of HCl in the noble gases
are similarly striking.5 Individual rotational lines become
progressively better resolved as one proceeds from Ar~l) to
Kr~l) to Xe~l) solvents—exactly opposite from what one
might expect from general tendency of increasing solute–
solvent interaction to broaden spectral lines. Some of this
trend is undoubtedly a result of the fact that the three noble-
gas solvents have been studied at successively higher tem-
peratures~thereby increasing the intensity of the more easily
resolved higher frequency lines!. Still, when one looks just at
the more comparable lower–frequency transitions, the basic
counterintuitive trend seems to remain.6

Theoretical efforts at understanding rotational energy re-
laxation have been neither plentiful nor targeted at quantum-
state-resolved systems. There have been a few interesting
molecular dynamics studies of classical rotational energy au-
tocorrelation functions in liquids,17–19but not nearly as many
as there have been of orientational and angular-velocity au-
tocorrelation functions. Similarly there have been efforts at
predicting the rotational and rovibrational spectroscopy of
hydride solutions, but based on phenomenological rather
than microscopic treatments of the solvent.20 The papers
closest in spirit to the present work are the groundbreaking
fully microscopic, mixed-quantum-classical simulations of
rotational Raman spectrum of H2 in H2O~l,s) and in Ar~l) ,13,14

but here as well, energy transferper sewas not the focus.
Indeed in the case of Ar~l) , no transitions betweenJ levels
seemed to be necessary to account for the spectra.13

The goal of this article will not be to rationalize the
rotational spectroscopy of dissolved hydrides. We defer such
specific spectroscopic predictions to a future article.21 What
we would like to do instead is to look at the more fundamen-
tal issue, the length of time a rotational quantum state can
maintain its identity in a liquid. In particular, we would like
to understand the rate at which rotational energy relaxes—
the rate at which a liquid induces inelastic angular-
momentum-state to angular-momentum-state quantum tran-
sitions. There has never been a direct measurement of such
rotational energy lifetimes (T1 values! in the liquid-state, so
a quantitative prediction might be of some use in its own
right. More to the point, though, seeing the way that these
well-defined quantum mechanical energy levels~with spac-
ings on the order of hundreds of cm21! manage to persist in
a liquid makes it natural to wonder about the parallels be-
tween the fates of rotational and vibrational states in liquids.
Will the time scales and molecular mechanisms relevant to
rotational population relaxation have any resemblance to
those seen in the much more familiar case of vibrational
population relaxation?22,23

As is well known, the basic phenomenology of vibra-
tional population relaxation rates in liquids is described
rather accurately by Landau–Teller theory, a result easily
understood as a straightforward application of Fermi’s
golden rule.22,24,25A harmonic vibration with frequencyv0

and reduced massm is predicted to undergo a transition from
quantum staten to quantum staten21 with a rate

kn→n215~2n/m\v0b!@11exp~2\v0b!#21ĥvib~v0!.
~1.1!

The factor in the brackets is needed to build in the detailed-
balance condition that at a temperatureT @with b51/(kBT)#

kn→n21 /kn21→n5exp~\v0b!, ~1.2!

but the details of the energy transfer process itself appear in
the vibrational friction ĥvib(v), which ~at the level of this
development! is simply the cosine transform of a force auto-
correlation function

ĥvib~v!5E
0

`

dt cosvthvib~ t !, ~1.3a!

hvib~ t !5b^F~ t !F~0!&, ~1.3b!

with the forceF what the force exerted by the solvent along
the normal mode coordinate would be if the normal coordi-
nate were held fixed.26–28

In the generalized-Langevin-equation formulation of vi-
brational dynamics, this correlation function actually is a
‘‘friction’’ in the very literal sense that the drag force on the
vibrating coordinate stems from the convolution of this fric-
tion with the velocity.27,28 @Technically, what is called for is
the autocorrelation function of a force ‘‘dynamically or-
thogonal’’ to the vibration, but the distinction seems to be
unimportant in practice.28# Thus Eq.~1.1! has a nice inter-
pretation as a statement of the fluctuation-dissipation
theorem29—that the~nonequilibrium! rate at which quanta of
vibrational energy\v0 are dissipated into the solvent is pro-
portional to the magnitude of the solvent’s own~equilibrium!
fluctuations at frequencyv0 . But what of rotational relax-
ation? Though it seems not to have been widely applied, the
generality of this result suggests that there should be an
analogous principle for rotational dynamics. One of the goals
of this article is to show that a fluctuation-dissipation rela-
tionship of precisely this sort does indeed govern the rate of
rotational energy relaxation and that we can therefore under-
stand the molecular mechanisms behind this quantum me-
chanical relaxation by delving into the microscopics of the
classical rotational friction. To be specific, at the same level
of approximation used in defining the vibrational friction,
this rotational frictionĥ rot(v) is

ĥ rot~v!5E
0

`

dt cosvth rot~ t !, ~1.4a!

h rot~ t !5~1/2!b^N~ t !"N~0!&, ~1.4b!

where N is the torque exerted by the solvent on a solute
whose orientation is held fixed,30–32so we shall first need to
make a connection between the quantum mechanical
rotational–state to rotational–state transition rate and this
quantum mechanical torque autocorrelation function. We
then need to find a route—in practice a classical mechanical
route—to computing and analyzing this correlation function.

Aiding us considerably in this endeavor is the fact that it
is possible to understand rotational31,32 ~and vibrational!33–37

friction in terms of the instantaneous normal modes~INMs!
of the liquid.38,39 The INM perspective is that the compli-
cated collective dynamics of the solution can be resolved
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into microscopically well-defined contributions from har-
monic modes spanning the natural frequency range of the
liquid ~its ‘‘band’’ !. It turns out that not only are frequency-
domain frictions given reasonably accurately in such a for-
mulation, but the molecular definitions of the modes allow
for a facile analysis of the principal mechanical motions that
lead to relaxation.23,33,35–37Moreover, the very notion of a
band will help us make some interesting distinctions between
the microscopic mechanisms appropriate to rotational transi-
tions inside and outside of the band.

The remainder of this article will be organized as fol-
lows: In Sec. II we develop a perturbation theory suitable for
treating rotational energy–level to energy–level transitions
for the just kinds of liquid solutions that allow for discrete
solute rotational levels. The resulting rate is then connected,
at the same level of perturbation theory, to the rotational
friction resolved into separate contributions from each order
of anisotropy in the solute–solvent interaction. Section III
presents both our linearized INM theory and an
instantaneous-pair theory for this anisotropy-resolved fric-
tion, the former for evaluating the friction at frequencies
within the INM band and the latter~in both dynamically
exact and nonlinear INM versions! for frequencies beyond
the band edge. The models and calculational details for our
numerical case studies of H2 and D2 in Ar~l) are described in
Sec. IV and in Sec. V we present the numerical results we
obtained by applying our formalism to these examples. We
conclude in Sec. VI with some comments on possible con-
nections with spectroscopic observables.

II. ROTATIONAL ENERGY RELAXATION RATES AND
ROTATIONAL FRICTION

A. Perturbative treatment of level-to-level rotational
energy relaxation in liquids

Consider a single linear, rigid-rotor solute dissolved in
an atomic liquid. The key dynamical variables of interest are
the anglesu and f specifying the solute orientation in the
laboratory frame, so we shall take the remaining degrees of
freedom, the center-of-mass position of the solute,r0 , and
the location of theN solvent atomsR5(r1 ,...,rN), to make
up our bath. The total Hamiltonian can thus be divided into
portions corresponding to solute rotation,H rot , bath transla-
tion, HB , and whatever anisotropic interaction there may be
between the solute and the solvent,V,

H5H rot~u,f,u̇,ḟ !1HB~Ṙ,R!1V~u,f,R!. ~2.1!

We are only interested in situations in which the aniso-
tropic interaction is sufficiently weak and slowly varying that
individual rotational states remain reasonably well defined
even when the rotor is dissolved. We can therefore safely
expand this interaction in spherical harmonicsYJM(u,f)

V~u,f,R!5 (
J51

`

(
M52J

J

AJM~R!YJM~u,f!, ~2.2!

with expansion coefficients

AJM~R!5E
0

2p

dfE
0

p

du sinu YJM* ~u,f!V~u,f,R!.

~2.3!

Note that the bath Hamiltonian contains the isotropic (J
50) portion of the solute–solvent interaction—which, in
general, will be neither weak nor slowly varying. However,
it is the anisotropy of the bath, theAJM(R) coefficients (J
>1), whose dynamics will turn out to matter.

In the absence of any solvent-induced anisotropy, the
solute would reside in a free-rotor quantum stateu lm&,

H rotu lm&5El u lm&, El5~\2/2I !l ~ l 11!, ~2.4!

with l andm the quantum numbers prescribing the total an-
gular momentum and its laboratory-framez-axis projection,
andI the solute moment of inertia. In order to ensure that the
solvent effects are weak enough to keepl and m as good
quantum numbers, we will presumably want the average off-
diagonal (l ,l 8) matrix elements of the anisotropic interaction
to be small compared to the corresponding (l ,l 8) energy
level spacings. That is we shall look for

^Vll 8
2 &!uEl2El 8u

2, ~2.5a!

Vll 8
2

~R![~2l 11!21~2l 811!21

3 (
m52 l

l

(
m852 l 8

l 8

uVlm,l 8m8~R!u2, ~2.5b!

Vlm,l 8m8~R![^ lmuVu l 8m8&, ~2.5c!

where the brackets in Eq.~2.5a! refer to a classical ensemble
average over the liquid configurationsR. Though this condi-
tion would typically not be satisfied for most molecules in
liquids,40 the tiny moments of inertia and nearly spherical
interactions found with H2 and D2 will, in fact, allow us to
satisfy this condition comfortably.

Assuming then, that Eq.~2.5a! holds, we can define the
desired l→ l 8 rate constant as the sum over all final, and
average over all initial,m states.

kl→ l 85~2l 11!21 (
m52 l

l

(
m852 l 8

l 8

klm→ l 8m8 , ~2.6!

and then calculate it, at least in principle, via Fermi’s golden
rule,

klm→ l 8m85~2p/\!(
a,b

Pau^auVlm,l 8m8~R!ub&u2

3d~El2El 81Ea2Eb!. ~2.7!

Here ua& and ub& are eigenstates of the bath Hamiltonian
HB , andPa is the equilibrium probability of the bath being
in the ath state. Moreover since Eq.~2.2! tells us that

Vlm,l 8m8~R!5 (
J51

`

(
M52J

J

AJM~R!^ lmuYJMu l 8m8&,

it is possible to rewrite the rate constant in terms of time
correlation functions of the anisotropy coefficients
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kl→ l 85\22~2l 11!21(
m

(
m8

(
JM

(
J8M8

^ lmuYJMu l 8m8&

3^ lmuYJ8M8u l 8m8&E
2`

`

dt exp~ iV l l 8t !

3^AJM~ t !AJ8M8
* ~0!&, ~2.8!

much as in the analogous problem of vibrational relaxation
in liquids. The quantityV l l 8 here refers to the transition fre-
quency

V l l 85~El2El 8!/\, ~2.9!

and by expressions such asA(t) we mean the time evolution
following the hypothetical pure bath~completely isotropic!
dynamics

AJM~ t !5exp~ iH Bt/\!AJM~R!exp~2 iH Bt/\!. ~2.10!

Not surprisingly, the fact that liquids are isotropic on the
average allows us to simplify these expressions considerably.
In particular, time correlation functions of the form appear-
ing in Eq. ~2.8! must not only be diagonal in bothJ andM,
but independent ofM11

^AJM~ t !AJ8M8
* ~0!&5dJJ8dMM8^AJ0~ t !AJ0~0!&, ~2.11!

meaning that

kl→ l 85\22~2l 11!21(
J

(
m,m8

(
M

^ lmuYJMu l 8m8&2

3E
2`

`

dt exp~ iV l l 8t !^AJ0~ t !AJ0~0!&

or, in terms of standard 32 j symbols,41

kl→ l 85\22E
2`

`

dt exp~ iV l l 8t !(
J

bJFll 8~J!

3^AJ0~ t !AJ0~0!&, ~2.12!

Fll 8~J![
~2l 811!

J~J11! S l J l 8

0 0 0D 2

,

~2.13!
bJ[J~J11!~2J11!/4p.

Equation~2.12! is as much as we can say quantum me-
chanically about our rate constants. However, for most sol-
vents we might be interested in~superfluid He being an in-
triguing exception!,15 we might expect the dynamics of our
bath to be rather classical. It therefore makes sense to pursue
some sort of classical or semiclassical approximation to the
quantum mechanical bath correlation function that lies at the
heart of Eq.~2.12!. How best to do so has been a subject
much discussed in the literature of late.42,43 Depending on
which particular features of the quantum problem need to be
preserved~the correct short-time limits, say, or the exact be-
havior in some special case or other!, there are a variety of
plausible routes, all of which allow us to compute the corre-
lation function classically and use the result to estimate the
quantum correlation function.42–46 Regardless of which av-
enue we pursue though, we shall need to ensure quantum
mechanically correct detailed balance,

kl→ l 8 /kl 8→ l5@~2l 811!/~2l 11!#exp~\V l l 8b!, ~2.14!

where the prefactor arises from the ratios of the number ofm
states associated with the two energy levels—and to do so
we shall need to preserve the proper time reversal invariance

E
2`

`

dteiVt^AJ0~2t !AJ0~0!&

5exp~2\Vb!E
2`

`

dteiVt^AJ0~ t !AJ0~0!&,

whereb5(kBT)21 with kB Boltzmann’s constant andT the
temperature.47

The approach we shall take here to satisfy these condi-
tions is to use the technique, familiar in studies of vibrational
relaxation, of expressing the quantal correlation function in
terms of its real part, and identifying that real part with the
classical equivalent.25 Since for any quantum mechanical
correlation functionC(t), C(2t)5C* (t)47

E
2`

`

dteiVt^AJ0~ t !AJ0~0!&

52~11e2\Vb!21E
2`

`

dteiVt Re@^AJ0~ t !AJ0~0!&#

'2~11e2\Vb!21E
2`

`

dteiVtCJ~ t !,

whereCJ(t) is theclassicaltime correlation function for the
Jth order anisotropy coefficient

CJ~ t !5^AJ0~ t !AJ0~0!&. ~2.15!

Substituting this approximation into Eq.~2.12! yields our
basic semiclassical approximation to the level-to-level tran-
sition rate

kl→ l 854\22@11exp(2\V l l 8b!] 21

3 (
J51

`

bJFll 8~J!ĈJ~V l l 8!. ~2.16!

HereĈJ(v) is the cosine transform of our anisotropy corre-
lation function

ĈJ~v!5E
0

`

dt cosvtCJ~ t !. ~2.17!

Notice that by interchangingl and l 8 in Eqs. ~2.16! and
~2.13! one can show that we do indeed satisfy Eq.~2.14!, the
detailed balance condition.

B. The role of friction in rotational energy relaxation

The anisotropy correlation functions may seem to be
rather abstruse quantities, but they are related rather simply
to the torque autocorrelation function—which, in turn, sets
the rotational friction felt by our solute. To see this connec-
tion, consider the spherical harmonic expansion of the torque
on the solute. From Eq.~2.2!

Nz52]V/]f5 i(
JM

MAJM~R!YJM~u,f!.
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Taking the rotor angles to be fixed at their initial valuesu0

andf0 for the duration of the friction dynamics then yields
the correlation function we need for the friction

^N~ t !"N~0!& frozen-orientation

53^Nz~ t !Nz~0!& frozen-orientation

53(
JM

(
J8M8

MM 8^AJM~ t !AJ8M8
* ~0!YJM~u0 ,f0!

3YJ8M8
* ~u0 ,f0!&,

where the average is over all of the initial conditions.
Suppose, consistent with the weak anisotropy assump-

tions of Sec. II A, we now assume that the dynamics of the
solvent anisotropy coefficientsAJM(t) are uncorrelated with
the solute orientation

^N~ t !"N~0!& frozen-orientation

'3(
JM

(
J8M8

MM 8^AJM~ t !AJ8M8
* ~0!&

3^YJM~u0 ,f0!YJ8M8
* ~u0 ,f0!&.

Since ^YJMYJ8M8
* &5(4p)21dJJ8dMM8 , the isotropy of the

liquid, Eq. ~2.11!, lets us express our results in terms of the
anisotropy correlation functions, Eq.~2.15!

^N~ t !"N~0!& frozen-orientation5 (
J51

`

^N~ t !"N~0!&J , ~2.18a!

^N~ t !"N~0!&J5bJCJ~ t !. ~2.18b!

Thus the friction, Eq.~1.4b!, can be written in this same limit
as a sum over these correlation functions

h~ t !5 (
J51

`

hJ~ t !, ~2.19a!

hJ~ t ![~bJ/2kBT!CJ~ t !. ~2.19b!

Our semiclassical approximation to the rotational energy
relaxation rate, Eq.~2.16!, therefore takes the simple form

kl→ l 858kBT\22@11exp~2\V l l 8b!#21

3 (
J51

`

Fll 8~J!ĥJ~V l l 8!, ~2.20!

where the angular-momentum coupling coefficientsFll 8(J)
are defined by Eq.~2.13! and the frequency-domain frictions
are just cosine transforms

ĥJ~v!5E
0

`

dt cosvthJ~ t !. ~2.21!

Equation~2.20! is the principal result of this article. It points
out that in order for our solute to be able to switch from one
rotational levell to anotherl 8, the solvent must be able to
generate rotational friction at a frequencyV l l 8 given by Eq.
~2.9!. The angular momentum considerations inherent in Eq.
~2.13!, moreover, impose the selection rule that a new level
l 8 is only accessible froml through aJth order friction if41~b!

l 1 l 81J5even, 1<u l 2 l 8u<J. ~2.22!

For the particular case we treat in this article, that of H2

in Ar, the situation is even simpler than this general frame-
work describes. Our anisotropic solute–solvent interaction
only includes a singleJ term (J52), meaning that there is
only a single term, that forJ52 in Eqs.~2.19a! and ~2.20!.
The rotational relaxation rate is thus literally proportional to
the total frequency domain friction

kl→ l 858kBT\22@11exp~2\V l l 8b!#21Fll 8~2!ĥ~V l l 8!,
~2.23!

the precise analogue of the Landau–Teller formula for vibra-
tional energy relaxation.22,24–26

Interestingly, these same expressions allow us to give a
nice classical interpretation of Eq.~2.5!, our quantum me-
chanical criterion for the validity of our weak anisotropy
treatment. From Eqs.~2.2!, ~2.5b!, ~2.5c!, and~2.13!, and the
liquid isotropy condition Eq.~2.11!, we know that the mean-
square off-diagonal matrix element is given by

^Vll 8
2 &5~2l 811!21(

J51

`

bJFll 8~J!^AJ0
2 ~0!&.

However, Eqs.~2.15! and ~2.18! tell us that the average on
the right-hand side is basically theJth component of the
mean-square torque. Hence we can write

^Vll 8
2 &5 (

J51

`

Kll 8~J!^N2~0!&J , ~2.24!

with

Kll 8~J!5~2l 811!21Fll 8~J!5@J~J11!#21S l J l 8

0 0 0D 2

.

~2.25!

For H2 in Ar, then, it is clear that our perturbative analysis
will be valid when the mean-square torque is small compared
to the energy level spacing,

^N2~0!&!uEl2El 8u
2/Kll 8~2!. ~2.26!

This finding is, in fact, the quantum mechanical analogue of
the observation commonly made in interpreting rotational
behavior in liquids: ‘‘strong-torque’’ liquids lead to a rela-
tively fast onset of diffusive rotational motion whereas
‘‘weak-torque’’ liquids have a more free-rotor, inertial, char-
acter to their rotational dynamics.48

III. INSTANTANEOUS-NORMAL-MODE AND
INSTANTANEOUS-PAIR THEORIES FOR
ROTATIONAL FRICTION

A. Instantaneous-normal-mode theory for rotational
friction: Linear theory

Now that we have a Landau–Teller-like theory connect-
ing rotational energy relaxation to rotational friction, it is
clear that we can explore energy relaxation processes by ex-
amining the molecular origins of the frequency-domain fric-
tion. We can certainly obtain accurate numerical values for
this friction ~at least for modest frequencies! through a mo-
lecular dynamics evaluation of the torque autocorrelation
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function, Eq. ~1.4!.30,31 However, besides simply carrying
out such calculations, we would like to deepen our qualita-
tive understanding by finding out which specific kinds of
molecular motion are associated with the relaxation of each
rotational level.

One of the more useful routes for pursuing this kind of
analysis makes use of an instantaneous-normal-mode~INM !
treatment of the friction. INM theories for vibrational33–37

and rotational31,32 friction have proven to be reasonably suc-
cessful in this regard, producing values for the frequency-
domain friction respectably close to those computed from
molecular dynamics and allowing facile partitioning of the
friction into easily interpretable microscopic components.
The rotational friction we need here is actually a little differ-
ent from that computed previously31,32 in that it has to be
resolved into separate contributions from each order of an-
isotropy. Still, the derivation is sufficiently close to our pre-
vious work that we limit ourselves to a brief summary of the
development.

The basic INM idea is that, for short times, the time
evolution of a liquid from an initial configurationR0 to some
configurationRt at time t can be described by a set of col-
lective harmonic modes, the INMs.49

qa~ t !5(
j m

Ua, j mmj
1/2@r j m~ t !2r j m~0!#;

a51,...,3~N11!. ~3.1!

Here r j m is themth Cartesian component (m5x,y,z) of the
position vector of thejth atom or independent site in the
system. In our particular case, with a diatomic solute in an
atomic solvent, we will want to allow for the collective mo-
tion involving not only the solvent atomsj 51,...,N), but
also the center of mass of the solute (j 50). The matrices
U(R0) which define the modes are prescribed by the require-
ment that they diagonalize the so called dynamical matrix
D(R0), the matrix of mass-weighted second derivatives of
the potential energy. In terms of our Hamiltonian, Eq.~2.1!,

@UT~R0!D~R0!U~R0!#ab5va
2dab , ~3.2!

D j m,kv5~mjmk!
21/2]2HB /]r j m]r kv . ~3.3!

Since the dynamics of the modes themselves is harmonic
we can evaluate time correlation functions just by writing the
important dynamical variables in terms of them. In particu-
lar, we know from Eqs.~2.15! and ~2.19! that we can com-
pute the friction we need from the anisotropy correlation
functions CJ(t). The linear INM theory for the rotational
friction then arises by assuming that displacements of the
anisotropy coefficients are linear in the modes

AJ0~ t !'AJ0~0!1(
a

~]AJ0 /]qa!q50 qa~ t !. ~3.4!

Substituting in the INM dynamics,49 evaluating the second
derivative of theCJ(t) correlation functions, and cosine
transforming the results yields our desired expression for the
frequency-domain friction, Eq.~2.21!.50,51

ĥJ~v!5~p/2!rJ~v!/v2. ~3.5!

The spectral densitiesrJ(v) appearing here are the so-called
influence spectra of the liquid, the spectra of INM modes
weighted by coupling constantsca

J reflecting the ability of
each modea to influence theJth order anisotropy.

rJ~v!5K (
a

~ca
J !2d~v2va!L ,

~3.6!
ca

J 5~bJ/2!1/2~]AJ0 /]qa!q50.

It is the fully molecular definition of such coupling constants
that will allow us to project out the key molecular events in
rotational energy relaxation.32,33,36,37,52

B. Instantaneous-pair theory and its nonlinear INM
implementation

The physical picture suggested by this linear INM theory
is that rotational energy relaxation occurs by a kind of reso-
nant energy transfer; a quantum of rotational energy\V can
be lost to the solvent if it goes into a bath mode with the
same frequencyV. Indeed, our experience with vibrational
energy relaxation~for which linear INM theory predicts pre-
cisely the same scenario!23 suggests that this idea should be
more or less quantitative. However, as with vibrational re-
laxation, we also know that this approach can only work
when the transition frequencies lie within the INM band—
within the natural frequency range of the liquid.53 The prob-
lem is that once we get beyond the first few rotational states
in H2 , we quickly cross the band ‘‘edge.’’ For the higher
frequency transitions we would actually expect our Landau–
Teller-like theory to fare rather poorly were we to insist on
computing the friction from harmonic solvent modes se-
lected from within the INM band.

When we were confronted with these same issues in
studying high-frequency vibrational relaxation in liquids we
noted that they did not necessarily invalidate the basic idea
of liquid modes.23,53It was conceivable, for example, that the
dominant relaxation pathway might continue to rely on bath
modes, but that these modes might be significantly anhar-
monic. Alternatively, some suitable nonlinear coupling of a
solute to an otherwise harmonic set of solvent modes might
act to mimic the effects of anharmonic modes, a possibility
widely appreciated in a solid-state context.54 On exploring
the matter in detail, what we found was that the actual
mechanism of vibrational relaxation was extraordinarily
simple, making it possible to test both of these alternatives—
and to choose between them. To achieve frequencies well
outside the INM band, the relevant dynamics has to be so
local that it needs to reside almost entirely in the pair motion
of the solute and the nearest solvent.36,37,53As a result, it is
possible to formulate a fully anharmonic, fully nonlinearly
coupled, treatment based on aninstantaneous-pairperspec-
tive: each liquid configuration in which the solute and a sol-
vent form what we called a mutual-nearest-neighbor
pair36,53,55is regarded as an instantaneous starting point for a
two-body, one-dimensional, classical trajectory involving
just the solute and the special solvent. The friction correla-
tion function ~there, a force autocorrelation function! can
then be evaluated by assuming that it is only the forces be-
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tween the pair that drive the relevant dynamics and that all
the dynamics does is make those intrapair forces evolve.53

Can the same kind of instantaneous-pair theory serve to
explain high-frequency rotational energy relaxation? Pre-
sumably the same arguments we used to motivate the locality
of the high frequency dynamics offorcesshould still apply
when we switch to considering thetorqueson a solute. Con-
sider, in particular, the velocity version of the friction, Eq.
~2.19! with Eq. ~2.15!51

ḧJ~ t !52~bJ/2kBT!^ȦJ0~ t !ȦJ0~0!&. ~3.7!

The anisotropy coefficients, which are closely related to the
torques, can be expressed as sums of solute–solvent pair
contributions as long as the anisotropic potential itself, Eq.
~2.2!, is pair decomposable. Hence we can always write

AJ0~R!5(
j

aJ0~r j 0!, ~3.8!

with r j 05r j2r0 the vector from the solute center of mass to
the jth solvent. But, consistent with the vibrational relaxation
discussion,53 we expect that for a given liquid configuration
R, the markedly short range of theaJ0(r ) functions will
guarantee that this sum will be dominated by a single,
nearest-neighbor solventj (nn).

AJ0~R!'aJ0~r j ~nn!0!. ~3.9!

Moreover, whenever that near neighbor is closer to the solute
than it is to any other molecule in the system@i.e., whenever
this solvent molecule is amutual nearest neighbor~mnn!#,
we expect that the dynamics of this pair will be governed just
by the intrapair forces. The equation of motion is then simply

m r̈ j ~mnn!052u8~r j ~mnn!0!, ~3.10!

with m the solute-solvent reduced mass,u(r ) the isotropic
part of the solute–solvent pair potential, andu8(r )
5du/dr. Pursuing this reasoning to its logical conclusion,
one also expects liquid configurations with mnn solute–
solvent pairs to dominate the configurational average in Eq.
~3.7!. Configurations with solvents that are near neighbors
but not mutual near neighbors should have noticeably
smaller couplings~inasmuch as their solute–solvent dis-
tances are necessarily larger!. We should therefore take
j (nn)5 j (mnn) in Eq.~3.9! as well.53,55

Differentiating Eq. ~3.9! and substituting the result in
Eq. ~3.7! then, gives our instantaneous-pair theory for the
high-frequency rotational friction

2ḧJ~ t !5~bJ/2kBT!^~daJ0 /dr !r ~ t !

3~daJ0 /dr !r ~0!ṙ ~ t ! ṙ ~0!& r 5r j ~mnn!0
, ~3.11!

where the average is over the initial values and velocities of
the mutual-nearest-neighbor solute–solvent distances and the
dynamics is governed simply by Eq.~3.10!. The omission of
all of the many-body features of the dynamics obviously
renders this formula incapable of including any of the col-
lective aspects of rotational relaxation. Yet, because it in-
cludes the dependence of the anisotropy coefficientsaJ0(r )
on r, this formula does take into account the important non-
linearities in the solute–solvent coupling. Its use of the full

two-body force means, similarly, that it manages to encom-
pass critical portions of the dynamical anharmonicity.53

To recover the connection with the liquid’s instanta-
neous normal modes, we now take this approximation back a
step. Suppose we continue to insist that the coupling nonlin-
earities are crucial, but we remove all traces of the dynamical
anharmonicities. In particular, instead of employing the exact
anharmonic dynamics of the solute–solvent pair, we can
treat the pair’s dynamics as that of a single harmonic, instan-
taneous normal mode—abinary mode36,56 of frequencyv0

subject to an instantaneous forcef 0 , both quantities being
determined by derivatives of the pair potentialu(r ) at the
instantaneous configurationr j (mnn)0(0).

mv0
25u9@r j ~mnn!0#, f 052u8@r j ~mnn!0#. ~3.12!

Since the solute–solvent pair now obeys the standard INM
dynamics

r j ~mnn!0~ t !5r j ~mnn!0~0!1~ f 0 /mv0
2!~12cosv0t !

1~v0 /v0!sinv0t, ~3.13!

with initial velocity v0 , but the friction is still given by Eq.
~3.11!, what we end up with is a fullynonlinear INM theory
based on this same instantaneous pair perspective.53

In the pair language, the analogue of our previous, lin-
ear, theory would come by regarding the derivatives
daJ0 /dr in Eq. ~3.11! as constants, a requirement equivalent
to Eq. ~3.4!. By going beyond this linearity while not allow-
ing for the full anharmonicity of the dynamics, we can test
the extent to which harmonic modes remain a useful concept
when we stray beyond the safe haven of the INM band.

IV. H2 AND D2 IN LIQUID Ar: MODEL AND
CALCULATIONAL DETAILS

A. The model

As we indicated in Sec. I, the large rotational constants
and nearly spherical shape of H2 and its isotopomers make
them natural candidates for studying the dynamics of dis-
crete rotational states in liquids. Though much of the previ-
ous experimental and theoretical work to date has focused on
these molecules dissolved in H2O,10–12,14 in order to make
sure that we understand the fundamentals, we deliberately
limit ourselves here to the more straighforward situation of
H2 and D2 in Ar~l) .13

As with the study of Xiao and Coker,13 we shall take the
Ar–Ar interaction to be of the Lennard–Jones form

uvv~r !54e@~s/r !122~s/r !6#,

with the standard parameters,57 s53.405 Å and e/kB

5119.8 K, and we shall consider just the single room tem-
perature ~high-density supercritical! thermodynamic state
with temperatureT and densityr given by

kBT/e52.5, rs350.95.

The H2–Ar part of the interaction is well described by
the Leroy–Hutson potential,58 the result of a careful fit to
spectroscopic, scattering, and thermodynamic data. The par-
ticular version we use here has the bond length fixed at 0.77
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Å. Specifically, the pair potential between the solute with
center of mass atr0 and thejth Ar solvent atom~located at
r j ) is written in the form

uuv~r 0 j ,Q j !5u0~r 0 j !1u2~r 0 j !P2~cosQ j !, ~4.1!

where r 0 j5ur02r j u and Q j is the angle betweenV̂0 , the
bond axis of the solute, andr0 j . This form lends itself rather
easily to a spherical harmonic decomposition of the type
assumed in Eq.~2.2!. Since

P2~cosQ j !5~4p/5! (
M522

2

Y2M* ~r0 j !Y2M~V̂0!,

the total anisotropic solute–solvent interaction can be written

V~V0 ,R!5(
j

u2~r 0 j !P2~cosQ j !

5 (
M522

2

A2M~R!Y2M~V0!,

leaving us with a single nonvanishing relevant anisotropy
coefficient, that forJ52.

A20~R!5~4p/5!(
j

u2~r 0 j !Y20~r0 j !. ~4.2!

Because the onlyJ that contributes in this model isJ52, we
shall be able to omit the sum overJ ~and theJ index! in all
of our subsequent equations.

To evaluate the friction within our weak anisotropy as-
sumption then, we need only to evaluate the time correlation
function C(t)5^A20(t)A20(0)& with the initial conditions
and the dynamics governed by the isotropic part of the inter-
action

VB~R!5(
j

u0~r 0 j !1 (
j ,k

~ j ,k!

uvv~r jk!, ~4.3!

that is, with the solute regarded as a sphere. In fact, even this
expression can be simplified. We note, as did Xiao and
Coker,13 that the elaborateu0(r ) function of LeRoy and
Hutson58 is well approximated in practice as a Lennard–
Jones potential withs53.1375 Å ande/kB559.145 K.

All of the calculations performed with D2 were carried
out using precisely the sameu0(r ) and u2(r ) potentials as
those used with H2 .

B. Simulation, INM, and instantaneous-pair-theory
calculations

Molecular dynamics simulations were carried out on a
sample consisting of the solute and 107 Ar atoms with the
trajectories propagated via the velocity Verlet algorithm us-
ing 2.16 fs time steps.59 A trajectory consisting of 1.05
3107 time steps was employed to obtain torque correlation
functions. When ordinary~linear! INM analysis was re-
quired, 40 000 liquid configurations were selected by sam-
pling every 108 fs along a trajectory and diagonalizing the
dynamical matrix each time.60 The resulting eigenvalues and
eigenvectors were used to construct the frequenciesva

2 and
coupling coefficients

ca5~15/4p!1/2]A20/]qa ,

for each configuration and each modea. Inasmuch as the
friction spectrum, Eq.~3.6!, is quite noisy in the high-
frequency region, when we needed to take Fourier trans-
forms we found it useful to fit the real-frequency part of the
spectrum first to the form61

r~v!5v(
k51

3

Bk exp$2@~v2Ek!/Gk#
2%.

The parameters for the fits are given in Table I. The imagi-
nary portion of the spectrum (va

2,0) turns out to be rather
small and, in any case, is irrelevant to energy relaxation at
the level of theory pursued in this article.

Instantaneous pair theory calculations require only that
we be able to evaluate one-dimensional correlation functions
involving the solute and its nearest neighbor. The averaging
over initial conditions for these correlation functions, Eq.
~3.11!, was accomplished by first computing the radial dis-
tribution function for the mutual-nearest-neighbor distances
~based on a sample of 106 independent configurations from
the molecular dynamics simulation!, and then performing the
two-dimensional integral over distance and the velocity us-
ing Simpson’s rule. The dynamics for the fully anharmonic
version of instantaneous-pair theory was evaluated by solv-
ing the one-dimensional pair equation of motion, Eq.~3.10!,
using the velocity-Verlet algorithm with the same time step
as in the many-body simulation.

TABLE I. Rotational friction spectra for H2 and D2 dissolved in dense supercritical argon.a

Solute k Bk (10222 J) Ek (cm21) Gk (cm21) Rel. dev.b

1 2.12 341.9 257.5
H2 2 0.366 160.9 71.6 0.11

3 0.677 44.3 65.4

1 0.780 298.3 134.9
D2 2 0.173 177.3 7.34 0.10

3 1.69 166.8 231.8

aParameters for the fits of each friction spectrumr2(v) to v times a sum of three Gaussians (k51,2,3), with
Bk , Ek , andGk , respectively, the amplitude, mean, and width of each Gaussian.

bRelative deviation of the fitted spectrum from the simulated spectrum:* dvurfit~v!2rdata(v)u/* dvrdata(v).
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V. H2 AND D2 IN LIQUID Ar: RESULTS

A. Exact and weak-coupling relaxation rates

The first issue for us to confront is the level of accuracy
we can expect from our weak coupling theory. The entire
development in the article relies on our somewhat counter-
intuitive claim that the dynamics of a liquid surrounding a
spherical solute is all that is necessary to understand the ro-
tation of a diatomic in a liquid~or at least is all that is
required for the limited class of systems considered here!. So
just how reliable is this assumption?

The criterion we put forth for the validity of the quantum
perturbation theory, Eq.~2.5!, is something we can check
directly for any pair of rotational energy levelsl and l 8 that
our solvent might induce a transition between@which, ac-

cording to Eq.~2.22!, are those for whichuD l u52#. Follow-
ing the dictates of Eq.~2.5!, we compare, in Table II, the
matrix elements coupling various pairs of levels with the
gas-phase energy level spacing between the levels. Since the
matrix elements are identical for H2 and D2 ~because they
depend only on the solute-solvent potential! while the energy
spacings differ by a factor of 2~because of the differing
moments of inertia!, the coupling-to-energy-gap ratios are
twice as large for D2 as they are for H2 . However even with
D2 , the ratio is well within the realm one would expect for a
valid perturbative treatment. Evidently hydrogen in Ar can
be thought of as a prototypical weak-torque situation in the
sense of Eq.~2.26!.

The second key step in our theory, though, was to write
down a weak-coupling version of the classical friction. It is
not out of the question that our perturbation criterion could
be satisfied without the anisotropy coefficients being as un-
correlated with the solute orientation as we assumed, but
here again, we can perform a direct test. In Fig. 1 we plot the
exact rotational friction obtained by simulating the torque
autocorrelation function, Eq.~1.4b!, and compare the results
with the weak-coupling friction, Eq.~2.19! with Eqs.~2.15!
and ~4.2!. Note that the exact friction uses the full LeRoy–
Hutson potential58 in order to evaluate the time evolution of
the torque, whereas the weak-coupling version calculates the
dynamics from just the isotropic portion of this potential, the
u0(r ) in Eq. ~4.1!. Despite these differences, the two ver-
sions are obviously barely distinguishable on the scale of the
graphs, both for H2 and D2. Repeating the weak-coupling
calculation with the Xiao–Coker Lennard–Jones version of
u0(r ) ~not shown! yields results almost identical to those
from the LeRoy–Hutson weak-coupling treatment. We shall

FIG. 1. The rotational friction felt by H2 ~top panel! and D2 ~bottom panel!
dissolved in dense supercritical Ar. Each panel compares the exact friction
~defined in terms of the classical torque autocorrelation function! with the
weak-coupling friction~derived from the classical anisotropy autocorrela-
tion functions!. Both correlation functions are evaluated by molecular dy-
namics, but for the former the dynamics is based on the full LeRoy–Hutson
potential for the solute–solvent interaction, whereas for the latter only the
isotropic part of the LeRoy–Hutson potential is used.

FIG. 2. The angular-momentum-coupling coefficientsFl ,l 22(2) as a func-
tion of l. Through leading order in the anisotropy of the solute–solvent
potential, these F’s are the coefficients governing thel→ l 22 rotational
transitions induced in a homonuclear diatomic solute.

TABLE II. Validity of perturbation theory for H2 dissolved in dense supercritical argon.

( l ,l 8)a ~2,0! ~3,1! ~4,2! ~5,3! ~6,4! ~7,5! ~8,6!

(Vll 8 /DEll 8)
b 0.049 0.019 0.011 0.0076 0.0056 0.0044 0.0035

aTotal angular momentum quantum numbers for each pair of rotational energy levels considered. Only pairs
with D l 562 are connected by nonzero matrix elements of the Hamiltonian.

bRatio ofVll 8 , the root-mean-square average of the matrix element coupling each pair, toDEll 85El2El 8 , the
gap between the isolated-molecule energy levels of the pair.
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therefore be able to make use of the computationally simpler
Xiao–Coker potential for all of our subsequent calculations.

Given that our basic result for the relaxation rate, Eq.
~2.20!, seems to be sensible, it is natural to ask which of
factors in this expression actually end up controlling the rate.
Focusing specifically on H2 and D2 in Ar @and therefore on
Eq. ~2.23!#, it is clear that the detailed-balance prefactor,

@11e2\Vb#21,

is going to be a rather slowly varying function of the transi-
tion frequencyV l l 8 under ambient conditions. The angular
momentum coupling coefficientsFll 8(2) will be important in
limiting the allowed transitions to those for whichl 85 l 62,
@Eq. ~2.22!#. However for the transitions which are allowed,
explicit calculation tells us thatFll 8(2) will be a similarly
slowly varying function of the transition frequency~Fig. 2!.
A glimpse at this figure, or equivalently, at the expression
derived from the analytical formula for the 3-j symbol,62

Fl ,l 22~2!5@ l ~ l 21!/4~2l 11!~2l 21!#,

shows thatF goes smoothly from its lowest possible value of
1/30 ~for the 2→0 transition! to 1/16 ~as l→`).

What must be the principal determinant of the rotational
energy relaxation rate then, is the rotational friction itself. As
one can see from the tabulated level-to-level transition rates
for H2 ~Table III! and D2 ~Table IV!, the rates drop by sev-
eral orders of magnitude as one progresses through the first
nine allowed transitions—precisely as we would have ex-
pected from the behavior of the friction portrayed in Fig. 1.
We turn therefore, to considering the molecular origins of
this friction.

B. Linear INM analysis

Within linear INM theory, Eqs.~3.5! and ~3.6!, the fre-
quency dependence of the rotational friction arises mainly
from the shape of the corresponding rotational influence
spectrum, Fig. 3.31,63 As is now familiar from our studies of
solvation and vibrational relaxation,35–37,52as well as from

TABLE III. Rotational population relaxation rates for H2 dissolved in dense supercritical argon.a

l 8→ l
V/2pcb

~cm21! MDc Linear INMc IPd Nonlinear INMd kl→ l 8 /kl 8→ l

2→0 341 0.28 0.43 0.19 0.27 0.97
3→1 569 0.14 0.17 0.12 0.12 0.15
4→2 796 5.331022 1.431022 5.031022 3.831022 3.931022

5→3 1024 1.731022 2.331024 1.831022 1.631022 1.131022

6→4 1251 4.831023 8.431027 6.131023 6.131023 3.531023

7→5 1479 1.431023 6.6310210 1.931023 2.031023 1.131023

8→6 1706 4.031024 1.1310213 5.931024 6.931024 3.631024

9→7 1934 1.431024 3.8310218 1.831024 2.531024 1.231024

10→8 2161 6.831025 2.9310223 5.231025 1.131024 3.831025

aTransition rateskl→ l 8 for the downward transitions from energy levell to energy levell 8, reported in ps21. The
corresponding rates for the upward transitions are prescribed by the detailed-balance ratios given in the last
column.

bTransition frequenciesV[(El2El 8)/\ with the El the isolated-molecule energy levels.
cEvaluation of the perturbation theory result by exact molecular dynamics simulation~MD! and by linear INM
theory.

dEvaluation of the perturbation theory result by pair theories: ‘‘IP’’ denotes the full instantaneous-pair theory
and ‘‘nonlinear INM’’ refers to the IP approach with the pair dynamics treated by INM theory.

TABLE IV. Rotational population relaxation rates for D2 dissolved in dense supercritical argon.a

l 8→ l
V/2pcb

~cm21! MDc Linear INMc IPd Nonlinear INMd kl→ l 8 /kl 8→ l

2→0 171 0.51 0.70 0.29 0.25 2.2
3→1 285 0.38 0.62 0.28 0.39 0.59
4→2 398 0.23 0.28 0.18 0.19 0.27
5→3 512 0.12 5.531022 0.10 7.931022 0.13
6→4 626 5.431022 7.031023 5.431022 4.331022 7.131022

7→5 740 2.331022 6.631024 2.731022 2.431022 3.931022

8→6 854 9.831023 4.131025 1.231022 1.231022 2.231022

9→7 968 4.131023 1.631026 5.731023 5.931023 1.231022

10→8 1081 1.731023 3.831028 2.631023 2.731023 6.831023

aTransition rateskl→ l 8 for the downward transitions from energy levell to energy levell 8, reported in ps21. The
corresponding rates for the upward transitions are prescribed by the detailed-balance ratios given in the last
column.

bTransition frequenciesV[(El2El 8)/\ with the El the isolated-molecule energy levels.
cEvaluation of the perturbation theory result by exact molecular dynamics simulation~MD! and by linear INM
theory.

dEvaluation of the perturbation theory result by pair theories: ‘‘IP’’ denotes the full instantaneous-pair theory
and ‘‘nonlinear INM’’ refers to the IP approach with the pair dynamics treated by INM theory.
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our previous work on~classical! rotational relaxation,31 in-
fluence spectra invariably emphasize higher values ofv2

than the solvent’s density of states~DOS! does. In particular,
the (v2,0) imaginary frequencies, which comprise a sig-
nificant fraction of the DOS, make only a miniscule contri-
bution to the influence spectrum~and no contribution what-
soever to the level-to-level transition rates—which involve
the friction only at certain discrete real frequencies!.

There is, however, an interesting difference between the
present influence spectra and others we have studied. In all
of the previous work, the emphasis on higher frequencies
took the form of a shift in the frequency of themaximum
solvent response with little, if any, change in the overall
spectral range of that response. This kind of behavior is a
natural consequence of the fact that it is the INM bands that
define the natural frequency range of intermolecular motion
in our solvents. Figure 3, though, seems to have the majority
of its friction spectral density lying outside the INM band.
So, where does this new high-frequency response come
from?

The answer becomes apparent if we project out of the
influence spectra the portion arising from the center-of-mass
motion of the solute~Fig. 4!. It is clearly the net translation
of our very light solutes that generates the bulk of the high-
frequency response predicted by linear INM theory.64 A cal-
culation of the areas under the projected spectra reveals that
center-of-mass translation actually generates on the order of
90% of the entire response~Table V!. Interestingly, since our
bath does include the motion of the solute center of mass

along with the motion of all of the solvent atoms, this same
high frequency dynamics must be present in the original den-
sity of states. But since it corresponds to just a few degrees
of freedom, it is invisible against the background created by
the macroscopic number of solvent degrees of freedom. In
the influence spectrum, by contrast, the background comes

FIG. 3. Normalized rotational friction spectrar(v)5r2(v) for H2 and D2

dissolved in dense supercritical Ar. Shown for comparison is the
instantaneous-normal-mode density of states for the solution,D(v), also
normalized to unit area. As is conventional, imaginary frequencies are plot-
ted as negative frequencies. In this and all of the succeeding figures, the
solute–solvent interaction is modeled with the isotropic Xiao–Coker poten-
tial. FIG. 4. Various projections of the rotational friction spectrum for H2 dis-

solved in dense supercritical argon.Top panel: partitioning between the
center-of-mass translation of the H2 solute~CM! and the motion of Ar atoms
~solvent!. Middle panel: partitioning between longitudinal~L! and transverse
~T! solvent dynamics~i.e., motion parallel and perpendicular to the solute-
center-of-mass/solvent vector, repectively!. Bottom panel: comparison be-
tween the component arising from the nearest-neighbor solvent~nearest! and
the total friction spectrum~total!.

TABLE V. Mechanism of rotational relaxation for H2 and D2 dissolved in
dense supercritical argon.a

Solute
Solute

center of massb Longitudinalc Nearest solventd

H2 94.4 92.2 82.8
D2 89.2 92.5 82.3

aPercentage contributions of the indicated dynamical processes to the total
rotational friction spectrum.

bPartitioning between motion of the solute-center-of-mass and solvent trans-
lational motion.

cPartitioning between solvent motion parallel~longitudinal! and perpendicu-
lar ~transverse! to the instantaneous solvent/solute-center-of-mass vector.

dPartitioning between solvent contributions arising from the solvent atom
instantaneously nearest the solute center of mass and all of the remaining
solvent atoms.
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solely from those few solvents close enough to the solute to
be able to create a significant torque.

We can refine our ideas about the mechanism of rota-
tional energy relaxation still more by imagining sitting in the
solute’s own reference frame and watching the solvent atoms
move with respect to the solute. From this perspective we
know that what we still need to specify in order to define the
mechanism is the geometry and number ofsolvent atoms
most critically involved in the dynamics. We can collect this
information as well via suitable projections of the influence
spectrum~Fig. 4 and Table V!.32 The results now look strik-
ingly similar to our previous findings for solvation and for
vibrational and rotational relaxation with much heavier
solutes:32,33,36,37,52More than 90% of the influence spectrum
stems from longitudinal solvent motion—from motion paral-
lel to the instantaneous solute-center-of-mass/solvent
vector—and nearly 83% of the spectrum arises from the
single solvent atom in each configuration that is nearest the
solute center-of-mass. In the language of the original labora-
tory frame, then, we would say that the key event in the
relaxation process almost always consists of the solute mov-
ing directly towards a single key solvent atom.

The linear INM theory should not only be useful for
assigning the mechanism, it should be reasonably accurate in
predicting the rotational friction31 and thus the actual rota-
tional energy relaxation rates. Indeed, as one can see from
Fig. 5 and from Tables III and IV, the predicted values of the
rotational friction track those of the exact molecular dynam-
ics quite adequately for the first few allowed rotational tran-
sitions. As long as we are considering transition frequencies

V within the INM band~being careful to include the solute–
translation portion of the band!, INM theory seems to nicely
capture—and explain—the falloff of the relaxation rates with
increasing rotational quantum number.

C. Instantaneous-pair and nonlinear INM analysis

Further inspection of Tables III and IV makes quite clear
that linear INM theory doesnot suffice once one enters or
goes beyond the upper edge of the INM band. For H2 , the
predicted rates for transitions with frequencies larger than or
of the order of 800 cm21 are far too small, as are the D2 rates
for frequencies above 500 cm21. These results are, of course,
precisely in line with our comments in Sec. III B: once the
density of INM modes at the relevant frequency becomes too
low, the one-quantum-of-solute-to-one-quantum-of-solvent
resonant energy transfer mechanism embodied in linear INM
theory no longer provides the fastest route to relaxation.53

The mechanistic information we gathered from our lin-
ear INM investigations, however, continues to be worth lis-
tening to even when we are well beyond the INM band edge.
The strong reliance we found on the one-dimensional motion
of a key solvent partner suggests that the instantaneous-pair
theory discussed in Sec. III B might very well be worth try-
ing. While we know that a pair theory cannot capture any of
the collective character of the relaxation, it is possible that
the ability to incorporate both anharmonic dynamics and
nonlinear coupling might more than make up for this defi-
ciency at these high frequencies. The results for H2 , shown
in Table III and in Fig. 6, bear out these expectations. The
instantaneous-pair theory predicts rates in excellent agree-
ment with molecular dynamics—and consistently better than
those of linear INM theory. In fact, the pair theory agrees
quantitatively with molecular dynamics results spanning
some three decades in relaxation rates, Fig. 7.

This numerical superiority to linear INM theory is actu-
ally revealing. For frequencies well inside the INM band
~less than 200 cm21!, the linear INM predictions for the fric-
tion are significantly better than the pair theory~Fig. 6!, just
as we found in our previous studies of vibrational
relaxation.53 Indeed, inside the band, the instantaneous-pair
rates fall well below the exact results since a pair theory
lacks the ability to represent collective dynamics. However,
the only frequencies relevant to the rotational transitions of
H2 fall outside the band of the neat solvent, so these collec-
tive dynamics are never needed. Supporting evidence for
these ideas is also found in the relaxation rates of D2 , Table
IV and Fig. 7. The instantaneous-pair-theory continues to
agree nicely with molecular dynamics outside the liquid
band. With the lower rotational transition frequencies of D2 ,
though, the first few transitions now fall inside the band—
and as we would have expected, are somewhat better de-
scribed by linear INM theory than by instantaneous-pair
theory.

We could, of course, be content with this agreement, but
it is telling to consider what would happen to these pair
results if we no longer insisted on an anharmonic treatment
of the dynamics. That is, suppose we were to adopt the non-
linear INM theory put forth in Sec. III B: we allow the pair
torque whose evolution we are studying to depend on the

FIG. 5. Comparison of linear instantaneous-normal-mode~INM ! predictions
for rotational friction with exact molecular dynamics results~MD! for both
H2 and D2 dissolved in dense supercritical Ar. The open symbols mark the
transition frequency for each allowedl→ l 22 rotational transition~the iden-
tity of which is indicated directly above the symbol!.
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pair separation in its exact, fully nonlinear, fashion, but we
now regard the pair dynamics as being controlled by a single
INM harmonic mode. Physically, this approach is hardly un-
reasonable. It basically postulates a multiphonon scenario in
which the nonlinear solute–solvent coupling generates over-
tones of the solvent INM modes and these harmonics then
account for the high-frequency relaxation.53,54,65 Nonethe-
less, one could wonder about the internal consistency of such
an approach. In effect it says that the same anharmonicity
that is unimportant for the underlying solute–solvent dynam-
ics is vital for the solute–solvent coupling being driven by
that dynamics. So can it, in fact, lead to a sensible picture of
rotational relaxation?

From the outcome of this kind of nonlinear INM treat-
ment presented in Tables III and IV and displayed in the
bottom panel of Fig 6, it is clear that we do not need to
include the dynamical anharmonicity in order to understand
rotational friction. Nonlinear INM calculations produce tran-
sition rates in excellent agreement with both the full
instantaneous-pair theory and the exact many-body molecu-
lar dynamics in the high-frequency regime. In fact, taken
together with the linear INM theory for relaxation occurring
within the INM band, it is evidently possible to give a
harmonic-mode interpretation for the complete range of ro-
tational transitions. There clearly are a variety of different
places that anharmonicity can enter this problem—and, in-

terestingly, they all seem to be surprisingly well insulated
from one another.53

As a final comment, we should note that all of these
calculations end up leading to fundamentally the same kind
of result, that rotational energy relaxation rates in liquids
obey the same kind of exponential-gap-law they tend to in
the gas phase.66 That is, for all but the lowest transitions, Fig.
7 tells us that it is fairly accurate to write

kl→ l 85k0 exp~2uV l l 8ut!, ~5.1!

with k0 and t constants. The frequency dependence of our
basic expression for the transition rate, Eq.~2.23!, might
seem unlikely to yield such a dependence on the transition
frequencyV, but as we noted earlier, both the detailed-
balance factor and theF angular-momentum coupling factor
are nearly constant at high frequencies, leaving the bulk of
the frequency dependence in the friction. As with our previ-
ous examination of vibrational friction,53 we indeed do find
empirically that the asymptotic form of our friction is expo-
nential

ĥ~v!5h0 exp~2vt!.

Amusingly, the values oft that leads to the best fits to our
molecular-dynamics-derived friction are on the order of the
characteristic nonlinear time scalest0 found from our previ-
ous instantaneous-exponential formulation of nonlinear INM
theory53

t05~2m/a0
2kBT!1/2,

FIG. 6. Pair-theory predictions for the rotational friction of H2 dissolved in
dense supercritical Ar. Both panels compare the instantaneous-pair theory
predictions~IP! with molecular dynamics~MD! and linear INM predictions.
The bottom panel examines the high-frequency response in more detail and
compares all three predictions with the results from a nonlinear INM rendi-
tion of the pair theory. Note the fifty-fold magnification of the vertical scale
in the bottom panel. As in Fig. 5, the open symbols mark the transition
frequencies for the indicatedl→ l 22 rotational transitions.

FIG. 7. Exponential-gap-law behavior for rotational energy relaxation rates
of H2 and D2 dissolved in dense supercritical Ar. The molecular dynamics
~MD! and instantaneous-pair~IP! predictions for the rate constants of the
D l 522 rotational transitions are shown as a function of transition frequen-
cies and compared with the empirical exponential-gap-law predictions
~long-dashed lines! obtained by fitting to the MD results. Open symbols
mark the transition frequencies for each allowed transition.
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a05mv0
2/ f 052~d ln u8~r !/dr !r ~0! ,

where the instantaneous frequencyv0 and instantaneous
force f 0 are defined by Eq.~3.12!. Average values oft0 were
found to be 21 and 29 fs for H2 and D2, respectively, in
reasonable accord with thet values of 29 and 41 fs we found
from our fits to the molecular dynamics results.67

VI. CONCLUDING REMARKS

It would not have been unreasonable to presume that
how a liquid extracts a solute’s vibrational energy would
have little to do with how it removes rotational energy. The
degrees of freedom themselves just seem to be fundamen-
tally disparate. From a classical perspective, vibrational en-
ergy is constantly interconverting between kinetic and poten-
tial energy while the rotational energy of a free rotor is
always kinetic. Quantum mechanically, the low-lying energy
levels for most vibrations are nearly equally spaced, meaning
that vibrations tend to have a single fundamental frequency,
whereas rotational energy level spacing increases monotoni-
cally for linear molecules. Worse still, the kinematics and
symmetries of the two kinds of motion are about as different
as one could imagine. It is easy to imagine that solvents
might very well need to interact with the two degrees of
freedom quite differently.

What this article has shown, though, is that molecular
rotations with well-defined energy levels seem to relax in
ways remarkably close to those of vibrations. Most notably,
rotational energy relaxation obeys arotational Landau–
Teller relation in precise analogy to the relation obeyed by
vibrations: the rate of level-to-level relaxation is proportional
to the frequency-dependent friction exerted by the solvent
evaluated at the frequency of the transition. That rotational
energy relaxation obeys some sort of fluctuation-dissipation
theorem is hardly a surprise; what may not have been quite
so obvious is that the solvent fluctuations that turn out to
govern the dissipation of rotational energy have such a close
analogy to the ones controlling vibrational energy. Both, in
particular, are controlled by precisely the same friction that
governs the regression of their respective velocities. Admit-
tedly, the rotational friction spectral densities we computed
in this article have a spectral range well beyond what we are
used to seeing for vibrational relaxation in aprotic
solvents.36,37,68The differences, though, come from the un-
usually low molecular weight of our solutes. When we com-
pute the vibrational friction spectral density for H2 we find a
result virtually identical to that for the rotational friction.69

Both frictions are dominated instantaneously by the same
few-body dynamics, so the solvent presents largely the same
spectral density to both vibrational and rotational motion.36,37

The fact that we were able to convert the problem of
rotational energy level lifetimes into a study of classical ro-
tational friction is what really gave us this insight into the
origins of the spectral density. With this relationship we
found that we could use molecular dynamics simulations to
obtain exact answers~exact, at least, within the basic weak-
coupling framework of this article!. More than that, though,
the relationship allowed us to use instantaneous-normal-
mode analysis of the friction to propose an interpretation of

the underlying molecular mechanisms. Projection of the
INM influence spectrum reveals the essentially few-body
character of the instantaneous relaxation mechanism, with
the key step the longitudinal motion of the H2 ~or D2) center
of mass relative to a single near-neighbor solvent atom. The
INM treatment of the solution automatically suggests, more-
over, that there really is a band of collective motions span-
ning the liquid’s own natural time scales. Indeed, our linear-
ized INM theory takes this idea sufficiently literally that it
interprets a Landau–Teller law as prescribing a 1:1 energy
transfer between the solute and these liquid modes, leading
to a prediction that relaxation rates should decay rapidly for
transition frequencies outside the band.

Both the basic predictions for the rotational friction and
the precipitous fall-off of relaxation rates are confirmed rea-
sonably well by molecular dynamics. The mechanistic ideas
are actually confirmed in even greater detail by the success
of the instantaneous-pair model for the rotational energy re-
laxation rates. Relaxation rates for all but the lowest few
rotational transitions obey an exponential gap law, a law re-
produced strikingly well by the one-dimensional pair dynam-
ics predicted from the isotropic part of the solute/mutual-
nearest-neighbor-solvent interaction. The agreement with
molecular dynamics could probably be improved a bit by
employing the full anisotropic interaction~as we did in our
previous vibrational studies!,53 but the critical molecular de-
tails are clear. We can even interpret this outside-of-the-band
behavior as a multiphonon extension of instantaneous-
normal-mode ideas. The high-frequency results are well re-
produced by regarding the pair dynamics as a single har-
monic mode, provided we allow for the fully nonlinear way
in which the dynamics of the torque depends on the mode.
This nonlinearity is evidently sufficient to generate the high-
frequency overtones necessary for resonant energy transfer.

It is probably worth emphasizing that all we have done
in this article is to look at rotational-energy-level-to-
rotational-energy-level transition rates. While our findings
certainly bear on a variety of spectroscopic studies of hy-
drides in solution, none of these results correspond to direct
experimental measurements. We would therefore like to
close with a few comments on possible connections with
experiment. Perhaps the conceptually simplest experiment
pertinent to our calculations~albeit the most difficult to carry
out! would be a pump-probe measurement of rotational
population lifetimes analogous to the familiar studies of vi-
brational population relaxation.22 For systems with optically
allowed rotational transitions, such as HCl, one could create
a specific nonequilibrium distribution of rotational states
with a short~but not ultrashort! IR pulse and then use the
absorption of a second IR pulse to watch the populations
relax. Examining the dipole–forbidden transitions in H2 and
D2, though, would require a somewhat more involved ap-
proach.

As the particulars of the experiment change, so would
the perspectives we would obtain on the relaxation dynam-
ics, but some rough indications of the time scales to be ex-
pected might be useful. Just as in vibrational
spectroscopy,22,70a standard Kubo treatment predicts that the
inverse lifetime for a rotationaltransition l→ l 8 is the sum of
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quantities we can think of as inverse lifetimes for the two
rotational levels. In particular, for a rotational energy levell,
that inverse lifetime is just the sum of the rate constants for
leaving that level21

1/T1~ l !5 (
l 8

~ l 8Þ l !

kl→ l 85kl→ l 221kl→ l 12 ~ for our system!.

@By analogy, a master equation treatment of the incoherent
population dynamics of a two-state system~0,1! reveals that
the value of 1/T1 is the sum of 1/T1(0)5k0→1 and
1/T1(1)5k1→0 .# Lifetimes computed in this fashion~Fig. 8!
show an interesting nonmonotonic dependence on rotational
state, though one we can understand in some detail: For lev-
els with l>2, population relaxation can, in principle, occur
via both upward (D l 52) and downward (D l 522) transi-
tions. However, under our conditions, the downward channel
is almost always the faster one for these states~because of
detailed-balance considerations, Tables III and IV!. Hence,
the general increasing trend forl>2 is simply a direct re-
flection of the systematic increase in energy gaps withl for
D l 522 transitions. By contrast, any excess population in
the l 50 and l 51 levels, can only relax by upward
transitions—suggesting that both of these levels should have
anomalously long lifetimes. Nonetheless, because of the
fivefold increase in degeneracy and the low energy gap for
0→2 transitions, the upward 0→2 transition rate is compa-
rable to the downward 2→0 rate for H2 ~and for D2 the
upward rate is even faster than the downward rate!. Hence
only the l 51 levels end up with anomalous population
lifetimes.71

Such fine details aside, the more qualitative lessons from
Fig. 8 are first, that the population lifetimes of the low-lying
rotational states are going to be on the order of picoseconds
and second, that D2 states relax significantly faster than H2

states. Both of these results have a simple interpretation
within the framework of this article: All of the allowed tran-
sitions for these low-energy states lie within thesolution’s

band, but the D2 transitions lie deeper within the band. Un-
fortunately, testing even these basic findings will be difficult
until direct lifetime measurements become available. Still, it
is interesting to wonder about the implications of this work
for more conventional rotational Raman and absorption
spectra.3–11,13,14The linewidths for such spectra will depend
not only on the rates of population relaxation, but also on the
rates for pure dephasing, so we will therefore need to defer
for a future article any quantitative predictions for such
spectra.21 Such issues notwithstanding, it is tempting to
speculate that one of the reasons that DCl peaks are more
difficult to see in the far-IR spectra of SF6 solutions than HCl
peaks3,6,8 is because DCl has smaller transition frequencies
and therefore undergoes much more rapid population relax-
ation. Similarly, one might hazard a guess that the tendency
for the HCl peaks to become progressively better resolved as
one proceeds from Ar to Kr to Xe solutions5,6 is due, at least
in part, to the progressive shrinkage of the solvent’s band-
width and the concomitant diminishment of population relax-
ation rates. We look forward to seeing these conjectures
studied in greater depth, both experimentally and theoreti-
cally.
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