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The short-time dynamics of molecular reorientation in liquids. II.
The microscopic mechanism of rotational friction

Joonkyung Jang and Richard M. Stratt
Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 29 November 1999; accepted 7 February 2000!

At short times, the dynamics of the rotational relaxation of linear molecules dissolved in liquids is
governed by the instantaneous rotational friction, a quantity one can specify in complete molecular
detail for each liquid configuration. Having the ability to construct such a friction is not only useful
for the insight it provides into rotational dynamics, it means that it is possible to think about the
superficially very different processes of rotational relaxation, vibrational population relaxation and
solvation in a common language. In particular, the ability to understand the friction in molecular
terms allows us to compare the actual solvent molecules participating and the actual solvent motions
involved in all of these relaxation processes. In this paper we carry out a detailed study of the
rotational friction felt by a homonuclear diatomic molecule dissolved in an atomic fluid, contrasting
the results for a variety of solute sizes and thermodynamic states. We find remarkable levels of
similarity among all three kinds of relaxation. While there are some detailed differences in the
geometry of the relevant solvent motions, all three processes seem to be controlled by a small
number of nearby solvents. Possibly as a result, the influence spectra~the spectral densities! of all
three are virtually identical. The invariance of these findings, and indeed of the mechanistic details,
to solute size and thermodynamic conditions suggests that there is a real universality to solution
dynamics that comes into play when sharply varying forces are involved. ©2000 American
Institute of Physics.@S0021-9606~00!50317-1#

I. INTRODUCTION

The phrase ‘‘rotational friction’’ seems suggestive of a
rather traditional view of rotational dynamics in liquids: that
the rotation of small molecules in solution is largely a matter
of rotational diffusion.1 Up until relatively recently the ex-
perimental evidence was taken to be completely consistent
with this presumption; there did seem to be some sort of
rotational drag exerted by a solvent caused by its viscosity,2

or perhaps by its bulk dielectric response,3 which acted vir-
tually instantaneously to convert the free rotation character-
istic of the gas phase into the diffusive motion found in
liquids. There were complications as to which particular
boundary conditions were best suited to modeling the pro-
cess with bulk hydrodynamics,4 and there have been more
recent studies pointing out the need to incorporate such fea-
tures as realistic solute charge distributions5 and different
diffusion constants around different solute axes,6 but the
prospects for learning something about the microscopics of
thesolventdynamics by looking at rotational friction always
seemed antithetical to a continuum picture—which seemed
more than ample for the experiments at hand.

A number of experiments have begun to appear, how-
ever, emphasizing the real need for a more molecular per-
spective on rotational relaxation. Zewail and co-workers,7 in
particular, have found that they could study the onset of dif-
fusive motion by tracing the evolution of rotational dynamics
starting with the gas phase and increasing the density, a pro-
cess which all but calls out for an interpretation in terms of
the changes in the motions of individual solvent neighbors.
Similarly telling, Horng, Gardecki, and Maroncelli8 have

demonstrated, working from the liquid side, that continuum
models cannot explain rotational dynamics in polar solvents
by appealing to dielectric friction. Alcohols especially are
poorly accounted for by such theories.

We can get some feeling for at least some of the issues
involved in arriving at a microscopic theory by thinking
about a set of rudimentary model problems: those posed by
the reorientational dynamics of homonuclear diatomics of
varying shapes~Fig. 1! dissolved in simple atomic liquids.
Solving the classical dynamics of such systems is, of course,
a routine matter for molecular dynamics simulations9 and we
portray in Fig. 2 the resulting dynamics for solutes ranging
from nearly spherical to quite oblong. The angular velocity
autocorrelation functions obtained,

Cvv~ t !5^vW ~ t !•vW ~0!&/^vW ~0!•vW ~0!&, ~1.1!

with vW (t) the angular velocity of the solute, make it clear
that this dynamics can span quite a range, even without the
complications of Coulombic forces. The slow, picosecond
decay with which the correlation is lost for the most spheri-
cal solutes indicates a nearly free rotation, whereas the 200 fs
oscillation seen with the longest bond lengths implies a pre-
dominantly librational character to the motion—and the liq-
uid time scales, correspondingly, run the gamut from diffu-
sive to inertial. Presumably any sucessful theory for this
problem must be robust enough, and microscopic enough, to
encompass this diversity in its entirety.9,10

The theoretical approach we suggested in the companion
paper to this one~paper I!11 is to continue to focus on the
origins of the rotational friction, but to do so fully molecu-
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larly. To this end we showed that by considering separately
the dynamics launched from each individual liquid configu-
ration, one could derive what we called an instantaneous
generalized Langevin equation,12 one in which we could give
a precise prescription for understanding how the necessary
friction could be constructed from genuinely molecular in-
gredients. The friction so obtained was accurate only at short
times, but rotational friction in liquids often does, in fact,
have a rather short time scale, even when the overall relax-
ation is slow.8,10,13,14 Our instantaneous friction therefore
turned out to be in reasonably good agreement with the true
friction obtained by molecular dynamics over most of the
interesting frequency range.11

The key to our development was that we could represent
the instantaneous dynamics of the liquid in terms of the sol-
vent’s instantaneous normal modes~INMs!.15,16 As in the
linear INM theories of vibrational relaxation and solvation,
the central quantity was what we referred to as an influence
spectrum17–19

r~v!5K (
a

ca
2d~v2va!L , ~1.2!

the spectrum of the INM frequenciesva for each liquid
mode a, weighted by the coupling coefficientsca , which
embody the efficiency with which each mode affects the sol-

ute dynamics. With rotational relaxation, for example, the
central issue is the ability of the modes to alter the torque felt
by the solute.

The importance to us of this spectral representation is
twofold: For one, we expect the rotational friction itself to be
related quite directly to the rotational influence spectrum.11

Since we have completely molecular interpretations of the
modes and thus of the coupling coefficients, we should be
able to discern the molecular mechanisms of rotational relax-
ation just by asking which sets of solvent motions end up
contributing the most to the influence spectrum. Equally in-
triguing though, is the fact that a variety of very different
solute relaxation processes can all be described by these in-
fluence spectra. We can therefore look for whatever com-
monalities there might be between solvation, vibrational re-
laxation, and rotational relaxation, asking whether the
limited dynamical possibilities imposed by a common sol-
vent are ever going to be enough to overcome the rather
different symmetries and couplings of these distinct
processes.17,19In this paper we will attempt to pursue both of
these objectives.

The remainder of this paper is organized as follows: In
Sec. II we summarize the route we took in paper I to obtain
the rotational friction in terms of a rotational influence spec-
trum and we point out how one can extract the contributions
of various physically relevant subsets of the solvent~and
solute! motions from these influence spectra. We turn next to
the numerics. The set of particular model systems we study
has already been protrayed in Figs. 1 and 2, but we provide
some more detail in Sec. III, along with the specifics for all
of our calculations. Our results for the rotational friction
spectrum~and, for comparison, for some examples of vibra-
tional relaxation and solvation! are then presented in Sec. IV.
We conclude in Sec. V with a discussion of some possible
connections with other perspectives on rotational friction.

II. THEORETICAL BACKGROUND

A. Instantaneous rotational friction

We begin by briefly reviewing the instantaneous rota-
tional generalized Langevin equation~GLE! formalism de-
veloped in paper I.11 Consider, as we did there, a rigid homo-
nuclear diatomic molecule dissolved in an atomic solvent
and denote the orientation of the diatomic in the laboratory
frame by the anglesu and f, taking the remaining ‘‘bath’’
variables,R5(rW0(t),...,rWN(t)), to include both the center-
of-mass position of the solute,rW0 , and the solvent atom po-
sitions, rW j ( j >1). The Hamiltonian for this infinitely dilute
solution can thus be written as

H5
I

2
~ḟ2 sin2 u1 u̇2!1

1

2 (
j 50

N

mjrẆ j
21V~f,u,R!, ~2.1!

with I the moment of inertia of the diatomic andmj the
masses of the diatomic and the solvent atoms,j 50 and j
>1, respectively. The crucial step in deriving an instanta-
neous GLE from Eq.~2.1! is to expand the total potential,
V(f,u,R), in powers of the displacements from the initial
configuration (f0 ,u0 ,R0). If we truncate the expansion of

FIG. 1. The shapes and sizes of the diatomic solute molecules studied in this
paper. The diatomics have a variety of bond lengths,d, but each atom on
each diatomic is drawn as a sphere with diameter ofs, consistent with the
choice of a single Lennard-Jones diameters for all the atoms involved in
the model.

FIG. 2. The exact, normalized, angular-velocity autocorrelation functions
for homonuclear diatomic solutes of different bond lengthsd dissolved in
dense supercritical argon~rs351.05,kBT/e52.5!. The curves were calcu-
lated from the molecular dynamics simulations described in Sec. III.
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the bath part of the potential at second order in the displace-
ments (R2R0), we are immediately led to introduce the
bath instantaneous normal modesqa ,

qa5(
j m

~mj !
1/2U j m,a~r j m2r j m,0!, ~2.2!

wherem labels thex, y, andz directions. Since the dynamics
of such modes is straightforward,20 subsequent expansion of
the remainder of the potential and re-expression in terms of
INMs allows us to write an explicit equation of motion for
the angular velocity of the solute, one in which all of the bath
effects are subsumed into an effective torque and a frictional
response, both fully defined in molecular terms.

The instantaneous rotational friction that results is a re-
flection of what we have called the rotational friction spec-
trum of the bath,r fric(v), defined as

r fric~v!5K (
a

~ca!2d~v2va!L , ~2.3!

where the average is over bath configurations and the cou-
pling coefficientsca indicate the extent to which theath
instantaneous normal mode,qa , causes a torque on the sol-
ute

ca52
]N

]qa
, ~2.4!

with N being the torque along the axis perpendicular to the
bond axis of the diatom. In terms of this fundamental spec-
tral response, the average time domain,h INM(t), and fre-
quency domain,h̃ INM(v), versions of the friction are simply

h INM~ t !5E dv r fric~v!
cosvt21

v2 , ~2.5!

h̃ INM~v!5E
0

`

dt cosvth INM~ t !5
p

2

r fric~v!

v2 . ~2.6!

The instantaneous GLE itself describes the reorienta-
tional dynamics of the solute for each liquid configuration,
but a virtually quantitative reformulation allows us to see
how the equation predicts the dynamics on the average. The
angular-velocity autocorrelation function,Cvv(t), generated
from our averaged GLE, for example, evolves as

Ċvv~ t !52E
0

t

dt@V̄21~1/I !h INM~ t2t!#Cvv~t!, ~2.7!

where the rms-instantaneous-librational frequency, V̄, is de-
fined as

V̄25 K 1

I

]2V

]u2L . ~2.8!

Note that were the solvent held fixed at its initial configura-
tion, the friction in Eq. ~2.7! would vanish, andCvv(t)
would behave as if the solute were a harmonic oscillator with
frequency,V̄. The rms-librational frequency is thus a mea-
sure of the caging abilities of a hypothetically static solvent.
Parenthetically, one might observe that it is the whole
memory kernel in Eq.~2.7!, I V̄21h INM(t), which plays the

role of the exact friction,h(t), in the more conventional
formulations of the rotational GLE. The INM friction, by
contrast, is defined to be initially zero, meaning that we
should really think of it as the change in the friction between
time t and time 0. Consistent with this idea, we see that we
need to interpretI V̄2 as h(0), the time-zero value of the
exact friction kernel. In fact, this identification is not only
sensible, it is actually a rigorous result for the true friction.21

B. Influence spectra and their projections

The ability to cast the study of rotational dynamics into a
form dependent on an influence spectrum means that there
are going to be strong parallels to our studies of other solute-
centered relaxation phenomena, such as vibrational
relaxation12,19,22and solvation.18 The basic~linearized! INM
perspective is that one inevitably need to understand a spec-
tral response of the form

rA~v!5K (
a

S ]A

]qa
D 2

d~v2va!L , ~2.9!

for some ‘‘spectroscopic probe function’’A in order to un-
derstand how a given solute degree of freedom relaxes.17–19

The spectroscopic probe function for the rotational friction
spectrum is thetorque along the axis perpendicular to the
bond direction unit vector,ê,

A5
d

2
@ ê3~FW b2FW a!#' , ~2.10!

whereFW b andFW a are the solvent forces on the two atoms of
the diatomic, and' denotes the component perpendicular to
the bond axis. The vibrational friction spectrum results when
A is identified as theforce along the bond axis,

A5 1
2ê•~FW b2FW a!. ~2.11!

Except for a factor of the bond length,d, the rotational and
the vibrational friction spectra thus explore different projec-
tions of the same force on the solute. Solvation, superficially
a rather distinct case, probes thepotential energy difference
between the ground and excited states of the solute. But, if
we model solvation as an electronic excitation of a single
atom and assume pair potentials, then the solvation spectrum
becomes perfectly analogous, with

A5(
j 51

N

v~r 0 j !, ~2.12!

wherev(r 0 j ) is the change in the solute–solvent pair poten-
tials between the two electronic states.17–19

Any influence spectrum written in the form of Eq.~2.9!
automatically resolves the relaxation process into a distinct
response for each frequency. More than that, however, the
contributions of each coefficient,ca can be broken into sepa-
rate pieces from each solvent atom and each direction in
space

ca5(
j m

U j m,acj m , cj m5~mj !
21/2

]A

]r j m
. ~2.13!
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We should therefore be able to identify the mechanisms by
which a relaxation occurs just by projecting theseca onto
particular directions relative to the solute or onto special sets
of solvent atoms interacting with the solute. Indeed, this ba-
sic approach has been elaborated before,18,19 but since these
projections serve as our principal machinery for investigating
the microscopics behind solvent friction, it is worth pausing
to discuss how they work in our particular context here. This
discussion will also allow us to introduce a slight improve-
ment into how our projection techniques handle solute trans-
lation.

Regardless of the specific variety of solute relaxation,
the coupling coefficients will always contain a contribution
from the center-of-mass translation of the solute (j 50); this
translation is, after all, one of the bath variables. In particu-
lar, for a solute with a relatively low molecular weight, the
center-of-mass motion of the diatomic will be significantly
coupled to rotational friction~about 25% of the total friction
spectrum in our present study, where the solute is twice the
mass of the solvent!. However, this coupling can actually be
expressed as a linear combination of the solvent atom con-
tributions. Let us denote the coupling constant of thej th
atom by the vector,cW j5(cjx ,cjy ,cjz). Momentum conserva-
tion ~or equivalently, translational invariance! tells us that23

cW052(
j 51

N Amj

M
cW j , ~2.14!

with the solute massM[m0 , allowing us to write eachca

formally in terms of purely solvent-atom contributions

ca5(
j 51
m

N S U j m,a2Amj

M
U0m,aD cj m . ~2.15!

Using Eq.~2.15! is equivalent to using Eq.~2.13!, but it will
be helpful in our subsequent projections in that it will let us
think physically about the solvent’s effective contributions to
relaxation.

The projection of influence spectra into two mutually
orthogonal directions easily follows the development of Eq.
~2.15!. Suppose we want to project the spectra onto the di-
rections specified by unit vectors,b̂ and b̂'(b̂•b̂'50). Re-
solving thecW j into the b̂ and b̂' directions

cW j5~ b̂•cW j !b̂1@cW j2~ b̂•cW j !b̂#, ~2.16!

lets us divide the mode coupling strength,ca , into

ca5ca
b1ca

'b , ~2.17!

where the individual mode couplings projected intob̂ andb̂'

directions are defined as

ca
b5(

b
Pab

b cb , ca
'b5(

b
Pab

'bcb , ~2.18!

respectively, with the projectors,Pb andP'b given as24

Pab
b 5(

j 51
m,n

N S U j m,a2Amj

M
U0m,aD bmbnU j n,b ,

Pab
'b5dab2Pab

b . ~2.19!

As a direct result of Eq.~2.17!, given any arbitrary vec-
tor b̂, an influence spectrum can always be written as a sum
of parallel, perpendicular, and cross components

rA~v!5rA
b~v!1rA

'b~v!1rA
cross~v!, ~2.20!

rA
b~v!5K (

a
~ca

b !2d~v2va!L , ~2.21!

rA
'b~v!5K (

a
~ca

'b!2d~v2va!L , ~2.22!

rA
cross~v!5K (

a
2~ca

b !~ca
'b!d~v2va!L . ~2.23!

One can, for example, takeb̂ to be the bond direction vector,
ê, to project influence spectrum into directionsparallel and
perpendicularto the bond axis of the diatom. Similarly, the
longitudinal-transverseprojection is obtained by identifying
b̂ as the unit direction vector,r̂ j 0 , from the center of mass of
the diatom to thej th solvent atom.22 In either case one can
discern the fraction of the entire response associated with
each projection by partitioning the total coupling strength,
C5^(a(ca)2&, in much the same way as

C5Cb1C'b1Ccross, ~2.24!

where the variousC’s on the right-hand side give the areas
under the corresponding projected spectra.18,19

One is not limited, of course, to such abstract geometri-
cal projections. We can also select out particular atoms in-
stead of summing Eq.~2.15! over all the solvent atoms.17,19

For each configuration, the solvent atoms nearest to the sol-
ute can be chosen to give thenearest atomprojection, or we
can obtain themaximal atomprojection by picking out a
single atom most strongly coupled with the solute for each
mode.25 For comparison we may also want to single out the
mode with the largest magnitude ofca for a given configu-
ration, leading to themaximal modeprojection. In all these
situations the key is that the formulation of the friction we
are using keeps the individual molecular pieces of the dy-
namic solvent response remaining in plain sight, ready to be
incorporated or deliberately frozen out, as we desire.

III. NUMERICAL METHODS

A. Model system and simulation details

In order to obtain sets of Boltzmann-distributed liquid
configurations and to have some exact dynamical results to
compare with, we carried out several constant number-
volume-energy~NVE! molecular dynamics simulations for a
single rigid diatomic dissolved in 106 solvent atoms.
Lennard-Jones~LJ! potentials

u~r !54«@~s/r !122~s/r !6#, ~3.1!

were used to model the interactions between all the atoms in
the system, including those of the diatomic. The total poten-
tial was thus of the form

V5 (
A5a,b

(
j 51

N

uuv~r A j!1 (
j ,k51
k. j

N

uvv~r jk!, ~3.2!
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whereuv andvv refer to the solute–solvent and the solvent–
solvent interactions, respectively,A labels the two sites of
the diatomic, andj andk are the solvent-atom indices. As in
many of the previous studies of vibrational relaxation in
atomic solvents,26,27 we set the mass,mu , of each atom in
the solute identical to those of the solvent,mv , and we chose
the uuv(r ) and uvv(r ) potentials to be identical~«uv5«vv
5«, suv5svv5s!. Argon-type parameters,

s53.405 Ȧ, «/kB5119.8 K, mAr540 a.m.u., ~3.3!

were used to translate our numerical results into experimen-
tal units.

The results presented here were obtained for five differ-
ent solute bond lengths,d51.25s, 0.65s, 0.325s, 0.16s,
and 0.08s, corresponding to an excluded volume for the di-
atomic of VvdW/Ȧ3541.4, 38.0, 30.4, 25.6, and 23.3,
respectively.28 Our default thermodynamic state was the high
density, room-temperature supercritical fluid state~rs3

51.05 andkBT/«52.5! frequently used for studying vibra-
tional relaxation,26,27 though we also conducted some liquid
state ~rs350.8, kBT/«51.0! simulations for comparison
purposes.

The simulations themselves29 employed standard peri-
odic boundary conditions and minimum image conventions.
In each case, the system was initially started from an fcc
lattice, with a transnational order parameter used to monitor
equilibration to a fluid state. To propagate the positions of
the solvent atoms and the center of mass of the diatomic, we
used the velocity-Verlet algorithm with a timestep,dt
50.001tLJ , where tLJ(5AmArs

2/«) for argon is 2.16 ps.
The reorientational motion of the diatomic, though, was in-
tegrated using a velocity version of the algorithm proposed
by Fincham30 ~Appendix A!. Angular-velocity and torque
autocorrelation functions were calculated by running 10 000
molecular dynamics~MD! trajectories with a length of 2000
timesteps each.

B. Calculation of influence spectra

To compute the influence spectra, we collected liquid
configurations along a molecular dynamics trajectory at 50-
time-step intervals~chosen so as to minimize correlation be-
tween the adjacent configurations sampled!. At each of the
40 000 configurations generated in this fashion, the dynami-
cal matrix,D, was constructed:

D j m,kn5
1

Amjmk

]2V

]r j m]r kn
, ~3.4!

with j andk50, ...,N, the atomic and solute-center-of-mass
indices, andm andn labeling thex, y, andz directions. The
eigenvalues,va

2, and eigenvectors,U j m,a , of the dynamical
matrix were then evaluated numerically using standard meth-
ods~conversion of the dynamical matrix to a tridiagonal ma-
trix followed by application of the QL method for
diagonalization!.31 To produce the untransformed rotational
coupling constants

cj m5~1/Amj !~]N/]r j m!52~1/Amj !~]2V/]u]r j m!,
~3.5!

we used the working formula,

cj m52
d

Amj
(

A5a,b
(
j 51

N

f A@ tJuv~rWA j!•b̂#m ~ j 50!

5
d

Amj
(

A5a,b
f A@ tJuv~rWA j!•b̂#m ~ j >1!, ~3.6!

where b̂5(cosu cosf,cosu sinf,2sinu), and the f A are
21

2 and 1
2 for A5a andb, respectively. Here we have defined

the interatomic ‘‘spring-constant’’ tensor,tJuv(rW), as

tJuv~rW !5uuv9 ~r ! r̂ r̂ 1@uuv8 ~r !/r #@1J2 r̂ r̂ #, ~3.7!

where the unit vectorr̂ 5rW/r , and the primes denote deriva-
tives with respect tor. The transformed coupling strengths,
ca , were then evaluated from Eq.~2.13!. With the mode
frequencies and these coupling constants in hand, the rota-
tional friction spectrum for each configuration could be com-
puted from Eq.~2.3! and the results averaged over all 40 000
configurations. To check for finite-size effects, we also cal-
culated the friction spectra using 30 and 254 solvent atoms,
with results virtually identical to those from the 106-solvent-
atom calculations. The final ingredient in the rotational GLE,
the rms-librational frequency,V̄

V̄25K (
A5a,b

(
j 51

N

~ f Ad!@~ f Ad!~ b̂• tJuv~rWA j!•b̂ !

2uuv8 ~r A j!~ r̂ A j•ê!#L , ~3.8!

was calculated by averaging over 106 configurations.
Even after being averaged over 40 000 configurations,

our friction spectra are rather noisy in the high-frequency
region. The reasons for this behavior are, in fact, rather fun-
damental reflections of the few-body mechanism by which a
liquid responds at high frequency.17,19,32–34For our subse-
quent calculations of the time-and frequency-domain friction
kernels,h INM(t) and h̃ INM(v), we therefore fitted the fric-
tion spectra to the functional form

r fric~v!5 (
k51

NGauss

Bkv expF2S v2Ek

Gk
D 2G . ~3.9!

The Levenberg–Marquardt method35 was used to find the
amplitude,Bk , center frequency,Ek , and width,Gk of each
Gaussian. Both one (NGauss51) and two (NGauss52) Gauss-
ian fits were examined, and the parameters so obtained are
listed in Table I. The fitted spectra, plotted in Fig. 3, illus-
trate the excellent quality of the two-Gaussian fit in particu-
lar.

Finally, to place our results for the rotational friction
spectra in context, we also calculated what the corresponding
influence spectra would have been for vibrational relaxation
and solvation taking place in the same system. The vibra-
tional friction spectra was obtained based on Eq.~2.11!, as-
suming the diatomic could translate but not rotate. The vi-
brational coupling constants necessary for this spectrum,
cj m52(1/Amj )(]

2V/]x]r j m), with x5urWb2rWau the distance
between the two atoms on the diatomic, were calculated
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from expressions we have reported previously.22 To evaluate
the solvation spectrum using Eq.~2.12!, we assumed, as with
the « model of Stephens, Saven, and Skinner,36 that the in-
teractions between atoms in the ground,ug , and the excited,
ue , states were LJ potentials differing only in well depth, so
that

v~r 0 j !5ue~r 0 j !2ug~r 0 j !54«l@~s/r 0 j !
122~s/r 0 j !

6#.
~3.10!

The constantl was set equal to 0.1.17

IV. RESULTS

A. Universal features of influence spectra

Our arguments in Sec. II suggest that the ways in which
a solvent sees the rotational motion of a solute could be
significantly different from how it senses the vibrational mo-
tion, ora fortiori, how it sees differences in electronic states,

in the same solute. Comparing Eqs.~2.10! and ~2.11!, for
example, might lead one to guess that motion of the solvent
perpendicular to the solute bond is critical in the former,
whereas motion parallel to the bond is key in the latter—and
that the dynamics of solvation, Eq.~2.12!, would be com-
pletely unrelated. What we find, however, is quite different.
In fact there is a striking universality to solvent influence
spectra, independently of whether one looks at rotational re-
laxation, vibrational relaxation, or solvation. Figure 4 shows
that, when normalized, these three influence spectra are in-
distinguishable from one another for our model system. Evi-
dently, aside from constant scaling factors, the solvent’s in-
stantaneous normal modes interact in precisely the same way
with these three rather different physical processes.

The microscopic origin of the similarity between the sol-
vation and the vibrational friction spectra has, in fact, already
been emphasized several times,17,19,34though an explanation
has only been offered for the commonalities seen in the high
frequency part of the response. The idea is that for any short-
ranged, sharply varying spectroscopic probe, whether it in-
volves forces or potentials, the highest frequency part of the
spectral response will come, almost entirely, from the small
number of solvent molecules which are instantaneously clos-
est to the solute. It is these most strongly interacting partners,
moving in ways determined solely by the geometry of the
solvent about the solute, that govern all possible high-
frequency solute relaxation processes. Indeed, the instanta-
neously nearest-neighbor solvent atoms by themselves are
responsible for a significant fraction of both the solvation
~82%! and the vibrational friction~65%! spectra in this
model.17 The high-frequency universality of vibrational re-
laxation and solvation clearly suggests that the solute’s re-
sponse to these nearest few atoms is remarkably insensitive
to the specific functional form of the external probe. What
we can do now is to use our new example of rotational re-
laxation to explore the generality of this analysis of the high-
frequency response—and to see to what extent the universal-
ity continues to extend to lower frequencies as well.

TABLE I. Rotational friction spectra for a homonuclear diatomic dissolved
in a dense supercritical argon fluid.

Bond length (NGauss)
a Bk(10221 J) Ek(cm21) Gk(cm21) Rel. dev.b

1.25s 2 654.2 94.2 75.5 0.052
240.4 148.3 47.1

1 791.4 111.5 72.2 0.10

0.65s 2 120.0 84.1 76.8 0.059
67.0 144.8 48.1

1 156.2 110.7 72.8 0.11

0.325s 2 15.7 77.1 68.4 0.063
13.5 139.0 53.3

1 23.6 110.5 70.3 0.12

0.16s 2 1.49 81.7 88.4 0.079
1.08 128.5 55.2

1 2.37 108.8 72.6 0.092

0.08s 2 0.135 80.9 66.2 0.064
0.1 140.2 51.1

1 0.19 109.0 70.1 0.099

aNumber of Gaussians used for each fit of the rotational friction spectrum:
r fric(v)5(k51

NGaussBkv exp@2((v2Ek)/Gk)
2#.

bRelative deviation of the fitted spectrum from the simulated spectrum:
*dvurfit(v)2rdata(v)u/*dv rdata(v).

FIG. 3. An example showing two different fits to a calculated rotational
friction spectrum. The system shown is a diatomic with bond length of
1.25s dissolved in dense supercritical argon~rs351.05,kBT/e52.5!.

FIG. 4. Normalized influence spectra for different relaxation processes of a
homonuclear diatomic solute dissolved in dense supercritical argon. The
rotational friction, vibrational friction, and solvation spectra are drawn as
solid, short-dashed, and long-dashed lines, respectively. The details of the
models used are presented in Sec. III. The solvation spectrum is taken from
Ref. 17, and, as usual, imaginary frequencies are plotted as negative fre-
quencies.
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Consider, for example, the effect on rotational friction of
changing the solute size, Fig. 5. Modifying the bond length
presumably ought to have a noticeable effect on the local
solute–solvent geometry. Indeed, as the diatomic gets
shorter, the coupling to the solvent is significantly reduced,
resulting in the smaller absolute magnitudes for the friction.
In much the same way, the rms- librational frequency,V̄,
systematically shrinks as the solute does, indicating the re-
duced static caging abilities of the solvent~Table II!. The
bottom panel of Fig. 5 reveals, however, that the rotational
friction spectra have an identical shape for all five bond
lengths: altering the solute size has no effect on the spectra
beyond a simple scaling of overall magnitudes.

In retrospect, this kind of outcome is just what we
should have expected from the solvent–solute coupling be-
ing filtered through a few special neighbors of the solute.
While the geometry of the first solvent shell around the sol-
ute is going to be noticeably changed by diminishing the
bond length, the geometry of a single nearby solvent atom
around a single solute siteis not. The few-body character of

the dynamical coupling to the solute appears not only to be
universal but to operate at the level of individual solute sites.

B. Specific dynamical mechanisms for rotational and
vibrational friction

If the dynamical coupling between the solute and the
solvent is really that well defined, it should be possible to
elucidate actual mechanisms for rotational and vibrational
relaxation. So, just what kinds of solvent motions are going
to be most effective in causing rotational and vibrational
friction? If our remarks in the proceeding section are to be
taken seriously, the first step might be to project the friction
spectra into contributions from solvent motionsparallel and
perpendicularto the bond axis.22 Table III lists the resulting
values ofC, the total coupling strengths underlying the rota-
tional and vibrational friction, for our five bond lengths.@The
total coupling strength of each projection,C(proj)
5^(a(ca

proj)2&, is defined as the area under the projected
spectrum, so the ratioR(proj)5C(proj)/C measures the
contribution from each projection to the total friction.# We
note from the table that perpendicular motion really is central
to the rotational friction, with components ranging from 60%
to 80% of the friction spectra. Some of this dominance of the
perpendicular motion is trivial geometry; in three dimensions
one expects a 33.3% parallel and a 66.7% perpendicular con-
tribution on purely statistical grounds. But, as can be seen in
Table III, except for the two shortest bond lengths, the per-
pendicular dominance goes beyond statistical expectations.
The perpendicular projection reaches a maximum atd
50.65s and decreases as the bond length is shortened.

The relevance of these numbers become more convinc-
ing if we compare this behavior to that seen with vibrational
friction ~Table III!. Here we see that the friction is mainly
controlled by parallel motions of the solvent atoms, espe-
cially for short bond lengths. The parallel projection is just

FIG. 5. The effect of solute bond length on the rotational friction spectrum
of a homonuclear diatomic dissolved in dense supercritical argon. The top
panel presents the actual rotational friction spectra for three different bond
lengths,d, making clear the sizeable differences in coupling strengths. By
way of contrast, the normalized rotational friction spectra for five different
bond lengths are shown in the bottom panel.

TABLE II. Instantaneous-librational frequencies,V̄, for a homonuclear di-
atomic dissolved in a dense supercritical argon fluid.a

Band length 1.25s 0.65s 0.325s 0.16s 0.08s

V̄/2pc(cm21) 75.87 66.34 50.74 32.68 17.84

aReported as the root-mean-square average defined by Eq.~2.8!.

TABLE III. Rotational and vibrational coupling strengths for a homonuclear
diatomic dissolved in a supercritical argon fluid.

Bond
length

Relaxation
process

Ca

(106 kgm2 s24)
R(i)b

~%!
R(')
~%!

R(L)
~%!

R(T)
~%!

1.25s rot 393 26.9 73.1 64.4 34.5
vib 328 36.3 63.7 84.5 15.6

0.65s rot 82.2 19.6 80.4 87.2 11.7
vib 62.9 48.8 51.2 93.3 6.0

0.325s rot 11.7 26.6 73.4 94.9 4.2
vib 13.8 55.3 44.7 95.9 3.4

0.16s rot 1.15 34.8 65.2 96.6 2.6
vib 2.05 61.0 39.0 97.5 1.9

0.08s rot 9.2331022 39.1 60.9 96.8 2.3
vib 0.20 63.8 36.2 98.0 1.5

aTotal coupling strength derived from the rotational friction spectrum~rot!
and from the vibrational friction spectrum~vib!. The vibrational coupling
reported here is multiplied by the bond length squared,d2.

bThe percentagesR denote the fraction of the total coupling corresponding
to different kinds of solvent motion. In particular,R(i), R('), R(L), and
R(T) give the ratios of the areas under the parallel, perpendicular, longitu-
dinal, and transverse projected friction spectra~respectively! to the area
under the total friction spectrum.
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above 33% for 1.25s, the longest bond length, but when the
bond length is decreased to 0.65s, it jumps to 50% of the
total friction. Further decreasing the bond length increases
the parallel contribution to 64%, almost double its expected
statistical weight. Vibrational and rotational relaxation evi-
dently do seem to rely on geometrically distinct solvent mo-
tions.

This argument to this point is based solely on the total
coupling strength of each projection, but it is worth noting
that the relative importance of a given kind of motion depend
reasonably strongly on the frequency one is probing. In Fig.
6 we plot the rotational friction spectra,r fric(v), for several
solute bond lengths with the components from parallel and
perpendicular solvent motions projected out. For imaginary
frequencies and for the lowest real frequencies~<30 cm21!,
the parallel and perpendicular motions are actually compa-
rable, with significant cross contributions. But as the fre-
quency increases, the perpendicular projection takes over.
This kind of frequency dependence is common to all three of
the spectra displayed in Fig. 6, suggesting that the mecha-
nisms by which the lowest frequency INMs modulate solute
relaxation may have somewhat different geometrical features
than the few-body coupling favored by the higher-frequency
modes.

It is interesting to contrast these parallel/perpendicular

signatures of relaxation with alternative dynamical possibili-
ties for the solvent. Rather than studying the preferred orien-
tations of the solvent motion with respect to the solute bond
axis, for example, we can look at how the dynamical effi-
ciency varies with orientation with respect to the solute cen-
ter of mass. Solvent momenta parallel and perpendicular to
the vector between the solvent and the solute center of mass
we shall call longitudinal and transverse motions,
respectively.22 It is plain from Table III that, regardless of
the bond length, longitudinal motion is always the major
source of both rotational and vibrational friction. We can see
this behavior in a little more detail in Fig. 7, where we show
these longitudinal-transverse projections of the rotational
friction spectrum for a number of different bond lengths. As
in the parallel-perpendicular projection, the longitudinal mo-
tion is barely distinguishable from the transverse motion for
the lowest real frequencies~and for imaginary frequencies!,
but it completely dominates the remainder of the influence
spectrum. In fact for the smallest bond length shown,d
50.325s, the longitudinal projection reproduces the full
spectrum almost quantitatively.

It is certainly true that there are some quantitative differ-
ences between the longitudinal projections for the rotational
and vibrational frictions, but even these distinctions become
smaller as the bond length diminishes. The significant point

FIG. 6. The contributions of different kinds of solvent motion to the rota-
tional friction felt by a homonuclear diatomic dissolved in dense supercriti-
cal argon. Shown here are the parallel~par.!, perpendicular~per.!, and
coupled ~cross! projections of the rotational friction spectrum plotted for
three different solute bond lengths:d51.25s, 0.65s, and 0.325s.

FIG. 7. The contributions of different kinds of solvent motion to the rota-
tional friction felt by a homonuclear diatomic dissolved in dense supercriti-
cal argon. Shown here are the longitudinal~long.!, transverse~trans.!, and
cross projections of the rotational friction spectrum plotted for three differ-
ent solute bond lengths,d51.25s, 0.65s, and 0.325s.
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here is that in this model rotational and vibrational relaxation
are largely alike in being promoted by solvents movingto-
wards the solute. This result is obviously not entirely unex-
pected, but it is not quite as trivial as it might appear. We
have found that this simple finding tends not to be as clearcut
with more complicated molecular solvents, and one could
certainly envision examples in which dipolar forces were
sufficiently important that the transverse solvent motions
could play a real role. Our present study with atomic solvents
may serve as a useful point of comparison when such cases
do arise.

C. Few-body features of the friction spectra

We turn now from the question of how the solvent can
move to foster solute relaxation to the question of which
solvents are doing the moving. Specifically we want to focus
on the particular solvent atoms and the instantaneous normal
modes most strongly correlated with the solute relaxation. A
maximal modeprojection, which selects, for each configura-
tion, the mode with the largest coupling strength,17 shows
that a single mode accounts~in an average sense! for about
40% of the total coupling strength~Table IV!. This figure is
deceiving, however. On frequency resolving this projection,
Fig. 8, we see that it exactly matches the high frequency part
of the full influence spectra (v/2pc>160 cm21). Evidently
it is a single mode out of the macroscopic total number of
modes that matters in the high-frequency part of the rota-

tional friction. This same maximal mode projection, how-
ever, is rather poor at emulating the bottom half of the spec-
tra.

A similar perspective is obtained when we consider the
solvent atoms which are thenearest neighborsof the
solute.17,37 These nearest-neighbor contributions~Table IV!
account for a more respectable 72% to 82% of the rotational
friction spectrum, but, once again, the projection precisely
replicates the high-frequency wings of the spectra~Fig. 8!.
The nearest-neighbor projection tends to match the full spec-
tra over a broader frequency range than the maximal mode
projection, but it still misses a significant portion of the full
spectra at low frequencies.

It is only when we realize that the nearest neighbors will
not necessarily lead to the largest couplings that we get
closer to a quantitative picture of the relaxation mechanism.
If we project out from each mode the contribution of the
single atom with the largest coupling strength~Table IV!, we
find some impressive figures. Thismaximal atomprojection
generates from 88% to 96% of the rotational friction and
90% to 100% of the vibrational friction.17,19,38Because for a
given configuration the identity of the maximally contribut-
ing atom varies from mode to mode, we are actually seeing

TABLE IV. Few-body contributions to the rotational and vibrational fric-
tion on a diatomic dissolved in a dense supercritical argon fluid.

Bond
length

Relaxation
processa

R ~max. mode!
~%!b

R ~nearest!
~%!

R ~max. atom!
~%!c

# of max.
atomsd

1.25s rot 39.4 71.5 88.3 10.3
vib 38.0 74.6 90.4 10.1

0.65s rot 41.7 75.9 91.4 9.0
vib 41.0 79.0 95.3 9.4

0.325s rot 42.1 80.1 94.4 8.3
vib 42.1 83.5 98.6 8.3

0.16s rot 41.7 82.3 96.3 7.9
vib 43.3 85.2 100.8 7.6

0.08s rot 42.1 81.0 96.3 7.7
vib 43.6 83.5 101.7 7.2

aProjections of the rotational~rot! and vibrational~vib! friction spectra, re-
spectively.

bThe percentagesR denote the fractions of the total solute-solvent coupling
corresponding to different kinds of solvent involvement~computed as the
ratio of the area under each projected spectrum to the area under the total
friction spectrum!. In particularR ~max. mode! is the fractional contribu-
tion from the maximally contributing solvent mode,R ~nearest! gives the
contribution from the solvent atom nearest the solute andR ~max. atom!
gives the total contribution of the solvent atoms which have the largest
coupling magnitude in any of the solvent modes.

cBecause of the presence of small, negative contributions from the cross
terms, individual projections can actually be slightly more than 100% on
occasion. See Ref. 38.

dThe average numbers of the maximally coupled atoms~as described in
footnote b! in a single liquid configuration.

FIG. 8. Few-degree-of-freedom projections of the rotational friction spectra
for a homonuclear diatomic dissolved in dense supercritical argon. The con-
tributions of the single instantaneous normal mode with the largest coupling
~max. mode!, the single solvent atom closest to the solute~nearest!, and the
solvent atoms which make the largest contribution to the coupling of the
solvent modes~max. atom! are plotted for three different solute bond
lengths,d51.25s, 0.65s, and 0.325s.
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the contributions of several different atoms; the average
numbers of which are also listed in Table IV. As the bond
length is shortened, the median number of these maximally
coupled atoms recedes slightly, from around 10 to 7. Of
course, the size of the first solvation shell will also vary as
we change the solute size, but the correlation with this coor-
dination number is surprisingly weak.39 What one can say is
that these median numbers tend to reflect little more than
half of the first solvent shell—still a microscopic number. On
the balance what we can see from Fig. 8 is that we capture
the vast majority of the ways in which the solvent contrib-
utes to rotational relaxation by focusing on just these few
maximally coupled atoms, though we apparently need more
than this tiny number of solvents to capture the essence of
the lowest frequency instantaneous friction.

Somewhat more globally, one can point to several fea-
tures common to all of these few-body projections. First, all
of them reproduce the high-frequency parts of the friction
spectra, and they do so with quantitative accuracy. Second,
in contrast to the directional projections, these more local
projections are insensitive to changes in the solute geometry.
With decreasing bond length, the perpendicular projection of

the rotational friction varies nonmonotonically between 60%
and 80% while the longitudinal projection monotonically in-
creases from 64% to 97% of the total friction. By contrast,
the maximal-mode~39% to 42%!, nearest-neighbor~72% to
82%!, and maximal-atom~88% to 96%! projections are all
relatively invariant to the changes in the solute size. The
third, and most crucial point, though, is that, as shown in
Table IV, these few-body projections end up with nearly the
same fractions for both rotational and vibrational relaxation,
though the vibrational relaxation numbers are almost always
a few percent higher. It is difficult to avoid drawing the
conclusion that the universality of the influence spectra we
saw in Figs. 4 and 5 is a reflection of the overriding impor-
tance of few-body dynamics.17,19,32–34

As a final matter, we should note that we have presented
all of our analysis based on a single thermodynamic state. To
see how the conclusions drawn from the dense supercritical
fluid would change with thermodynamic conditions, we re-
peated the INM analysis for a true liquid-state point~kBT/e
51.0 andrs350.8! for three different solute bond lengths,
d/s51.25,0.65,0.325. In Fig. 9, we plot all of the same pro-
jected spectra we looked at before, but for the liquid solvent
and for the one cased51.25s. There is, in fact, a noticeable
change: the frequency range spanned by INMs is reduced by
nearly half in both the real and imaginary frequencies. The
qualitative behaviors of the various projections, though, re-
main intact, and the proportions of each projection listed in
Tables V and VI remain in quantitative agreement with those
from the supercritical fluid.

V. CONCLUDING REMARKS

There is very little in the prevailing hydrodynamic mod-
els of rotational relaxation which would have led us to sus-
pect that rotational dynamics would have anything in com-
mon with vibrational population relaxation. From an
experimental standpoint, rotational relaxation and rotational
diffusion have almost become synonomous terms in the
treatment of reorientation in liquids. That similar kinds of

FIG. 9. Different solvent contributions to the rotational friction for a homo-
nuclear diatomic dissolved inliquid argon~kBT/e51.0, rs350.8!. Drawn
in the figure are the parallel–perpendicular~par.–per.!, longitudinal–
transverse~long.–trans.!, maximally coupled solvent mode~max. mode!,
nearest-solvent neighbor~nearest!, and maximally coupled solvent atom
~max. atom! projections of the rotational friction spectrum for a solute with
bond lengthd51.25s.

TABLE V. Rotational and vibrational coupling strengths for a homonuclear
diatomic dissolved in liquid argon.

Bond
length

Relaxation
process

Ca

(106 kgm2 s24)
R(i)b

~%!
R(')
~%!

R(L)
~%!

R(T)
~%!

1.25s rot 43.4 24.1 75.9 68.2 31.1
vib 33.8 38.1 61.9 86.8 13.2

0.65s rot 9.9 18.9 81.7 88.7 10.4
vib 7.5 50.2 49.8 94.4 5.2

0.325s rot 1.5 25.8 74.2 95.5 3.7
vib 1.8 55.9 44.1 96.6 2.9

aTotal coupling strength derived from the rotational friction spectrum~rot!
and from the vibrational friction spectrum~vib!. The vibrational coupling
reported here is multiplied by the bond length squared,d2.

bThe percentagesR denote the fraction of the total coupling corresponding
to different kinds of solvent motion. In particular,R(i), R('), R(L), and
R(T) give the ratios of the areas under the parallel, perpendicular, longitu-
dinal, and transverse projected friction spectra~respectively! to the area
under the total friction spectrum.
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non-diffusive, few-body solvent motions would come into
play in both rotation and vibrational relaxation makes the
connection especially intriguing.40

The instantaneous perspective, though, makes it clear
that not only rotation and vibration, but solvation are trig-
gered by a spectrum of solvent motions virtually identical to
one another. There are still some detailed geometrical differ-
ences: solvents moving perpendicular to the solute bond axis
are best at promoting rotational relaxation, for example,
whereas motion parallel to the bond axis is best for fostering
vibrational relaxation, but, for the most part, the relaxation
processes for our nonpolar solute dissolved in our nonpolar
solvent seem to be remarkably universal. Both rotational and
vibrational friction are largely governed by the longitudinal
motion of solvent atoms towards the center of the solute.
Much more strikingly, both kinds of friction are dominated
by the motions of a miniscule number of solvents. Unlike the
geometrical considerations, which depend to a varying extent
on the size and shape of the solute, the few-body character is
as close to an invariant as one could imagine. Just one or two
atoms in the vicinity of the solute contribute more than 70%
of the friction spectra, and no more than 10 atoms is ever
needed to reproduce the friction at 90% level. It is undoubt-
edly this few-body flavor of the solvent friction that lies
behind most of the universality we see in the influence spec-
tra for different physical processes and the distinct solute
sizes.

These results, nonetheless, do pose a number of ques-
tions. Most obvious of these is what happens to our findings
when we go to more complicated molecular solvents. Al-
though the pronounced few-body signatures found in recent
INM analyses of vibrational relaxation in molecular fluids
are suggestive, it remains to be seen how, or if, rotational
dynamics changes when we shift from atoms to molecules as

solvents. One can also begin to ponder some extra dynamical
possibilities opened by molecular solvents. What determines
how much of a solute’s energy initially goes to solvent rota-
tion and how much to solvent translation? Are either the
few-body character or the similarity between vibrational and
rotational relaxation altered significantly when the solute–
solvent interaction becomes long ranged?

This last question is essentially the issue of dielectric
friction, usually defined implicitly as the excess friction ac-
companying the electrostatic forces in the system.3,13,14,41

The concept has been central to much of the discussion of
rotational dynamics in polar liquids, yet the recent careful
experimental study of Horng, Gardecki, and Maroncelli8 has
raised the question of just how complete our picture of it is.
The excess friction caused by Coulombic forces can be quite
significant, but our and other workers’ observations in study-
ing vibrational relaxation were that the real effects of these
forces could be rather indirect.14,42–44In our own study,19,42

we noted that if the solute-solvent interaction could be writ-
ten as a sum of ‘‘mechanical’’ and electrostatic potentials,

uuv~r !5umech~r !1uelec~r !, ~5.1!

we could rigorously divide the instantaneous friction into the
mechanical, rmech(v), dielectric, rdiel(v), and cross,
rcross(v), terms

r~v!5rmech~v!1rdiel~v!1rcross~v! ~5.2!

~as opposed to the more common expression without the
cross term!. While it was tempting to identify the purely
dielectric term here as the dielectric friction, the cross term
was often found to be of similar magnitude and opposite
sign. The direct dielectric effects were thus largely cancelled.
Electrostriction, however, inevitably served to amplify the
mechanical friction: electrostatic interactions made the local
structure around the solute more compact, thereby enhancing
the effects of the short-ranged forces.42 It is worth noting
then, that in this vibrational case the key to understanding the
role of dielectric friction was having a theory sufficiently
microscopic that we could tease out these kinds of coupled
processes. We might anticipate that unraveling the molecular
contributions to dielectric rotational friction could now be
carried out similarly.

We should probably also remind the reader that, as we
emphasized in the Introduction, we have not even tried to
come to grips with the diffusive time scales of rotational
motion. We were interested, instead, in the triggering mo-
tions that define the mechanisms by which relaxation takes
place in a solvent. However, it is revealing to note that there
are some connections with theories for the rotational diffu-
sion. Gordon’s classicm- and J-diffusion models, for
example,45 are concerned, for the most part, with a limit
completely opposite from ours. By keeping sinu fixed in our
formulation of the twist angles, Eq.~2.19! of paper I,11 we
are assuming that bond axis of our solute moves relatively
little, so that the solute rotates smoothly, without tumbling,
for each liquid configuration. Both them- and J-diffusion
models, by contrast, are based on significant random jumps
in the direction of the angular momentum vector, followed
by free rigid-body motion. Still, theJ-diffusion model also

TABLE VI. Few-body contributions to the rotational and vibrational fric-
tion on a diatomic dissolved in liquid argon.

Bond
length

Relaxation
processa

R ~max. mode!
~%!b

R ~nearest!
~%!

R ~max. atom!
~%!c

# of max.
atomsd

1.25s rot 46.8 74.4 90.1 11.0
vib 46.0 77.6 92.3 11.3

0.65s rot 49.0 78.2 92.5 9.6
vib 48.5 80.8 96.3 10.5

0.325s rot 48.5 80.5 94.7 8.6
vib 48.9 83.7 98.6 8.9

aProjections of the rotational~rot! and vibrational~vib! friction spectra, re-
spectively.

bThe percentagesR denote the fractions of the total solute-solvent coupling
corresponding to different kinds of solvent involvement~computed as the
ratio of the area under each projected spectrum to the area under the total
friction spectrum!. In particularR ~max. mode! is the fractional contribu-
tion from the maximally contributing solvent mode,R ~nearest! gives the
contribution from the solvent atom nearest the solute andR ~max. atom!
gives the total contribution of the solvent atoms which have the largest
coupling magnitude in any of the solvent modes.

cBecause of the presence of finite, though small, negative contributions from
the cross terms, individual projections can actually be slightly more than
100% on occasion.

dThe average numbers of the maximally coupled atoms~as described in
footnote b! in a single liquid configuration.
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postulates that the magnitude of the angular momentum,J,
randomly switches in such a way as to sample a Boltzmann
distribution. Were we to interpret each successive jump as
placing us in a new instantaneous liquid configuration, our
approach too could be thought of as randomly choosing the
magnitude of the solute angular momentum~and the orien-
tation of the solute bond! from the Boltzmann distribution.
The difference is that our ‘‘jumps’’ are much more infre-
quent and we attempt to treat the dynamics between our
jumps much more accurately than simple, gas-phase, rigid-
body motion would; the bond orientations and magnitudes of
J we choose are only initial values in a subsequent trajectory
calculation.46

This relationship with theJ-diffusion model suggests
that rotational dynamics might be uniquely suited as an ex-
ample of how short-time, INM kinds of perspectives can be
extended so as to include the onset of diffusive motion. The
predominantly few-body character we see in the instanta-
neous dynamics could very well make the nature of this ex-
tension to the presumably collective behavior of diffusion all
the more interesting.
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APPENDIX

For a rigid-linear molecule, Fincham30 has proposed a
leapfrog algorithm for propagation of the bond direction vec-
tor, ê, and its velocity,uW 5dê/dt. We derive here a velocity
version of the algorithm for an improved performance in
handling angular velocity and energy. The bond direction
vector evolves in time as47

ė̂5uW , ~A1!

uẆ 5~1/I !gW'2uuW u2ê, ~A2!

where gW 5SAdAFW A is the so-called auxiliary torque on the
molecule,gW'5gW 2(gW •ê)ê is its component perpendicular to
the bond axis. HereFW A is the force on siteA of the linear top,
and the distancesdA are defined asê•(rWA2rWcm), whererWA

andrWcm are the site and center-of-mass positions of the linear
top, respectively. The velocity-Verlet algorithm for the
propagation ofê anduW from timest to t1dt reads

ê~ t1dt!5ê~ t !1dt uW ~ t !1 1
2~dt!2uẆ ~ t !, ~A3!

uW ~ t1 1
2dt!5uW ~ t !1 1

2dt uẆ ~ t !, ~A4!

uW ~ t1dt!5uW ~ t1 1
2dt!1 1

2dt uẆ ~ t1dt!. ~A5!

Equations~A3! and ~A4! are readily advanced in time by
usinguẆ (t) from Eq. ~A2!. To propagate Eq.~A5! however,
we need theuuW u2 at timet1dt, which is not available at that
point. We thus need to evaluateuuW (t1dt)u2 by making the
approximation,

uẆ ~ t1dt!'
uW ~ t1dt!2uW ~ t1 1

2dt!
1
2dt

5~1/I !gW'~ t1dt!2uuW ~ t1dt!u2ê~ t1dt!, ~A6!

where Eq.~A2! has been used. Taking the dot product of Eq.
~A6! with eW (t1dt) gives

dtuuW ~ t1dt!u252eW~ t1dt!•uW ~ t1 1
2dt!, ~A7!

where we have used the orthonormality of the bond direction
vector (ê•gW'5ê•uW 50,ê•ê51). This expression can be sub-
stituted into Eq.~A6! to give the desireduẆ (t1dt) and com-
plete the final step of the propagation, Eq.~A5!. The angular
velocity, vW (t), of the linear top can then be calculated as
vW (t)5ê(t)3uW (t).
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