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The short-time dynamics of molecular reorientation in liquids. I.
The instantaneous generalized Langevin equation

Joonkyung Jang and Richard M. Stratt
Department of Chemistry, Brown University, Providence, Rhode Island 02912

(Received 29 November 1999; accepted 7 February 2000

Up until relatively recently, experimental measurements of the rotational dynamics of small
molecules in liquids were largely confined to seeing the effects of rotational diffusion. The
molecular character of the process seemed of little relevance. However, newer measurements have
begun to look in some detail at the microscopics behind molecular reorientation. We show in this
paper that it is possible to understand the short-time dynamics of rotation in liquids at a molecular
level by looking at the instantaneous normal modes of the remaining degrees of freedom. With the
aid of some other, properly short-time, approximations, the reorientational dynamics can be cast into
the form of an instantaneous generalized Langevin equation—one defined for each liquid
configuration. One therefore obtains fully molecular expressions for the instantaneous rotational
friction and fluctuating torque felt by a solute. The average friction so obtained seems to describe
the basic nondiffusional aspects of rotation reasonably accurately and lends itself—as we illustrate
in the companion paper—to more detailed investigations into the actual molecular mechanisms
behind rotational relaxation. In the course of this work we also show that just as the autocorrelation
function for the force on a rigid bond yields an accurate portrayal of the friction needed to study
vibrational relaxation, quantitatively accurate results for the rotational friction can be provided by
using molecular dynamics to compute the torque autocorrelation function for an orientationally rigid
solute. © 2000 American Institute of Physid$$0021-960600)50217-7

I. INTRODUCTION with ©(t) some angular displacement of the molecule over
_ . thetimet andP(x) theLth order Legendre polynomial&
While mqlecules tend_to _ha\{e much the same v_|brat|9nabeing 1 or 2 depending on the particular experimemhe
and electronic character in liquids that they do in ISOIatlon’experiments invariably found these correlation functions to

the same is clearly not the case for molecular rotation. Th?t)e exponentially decaying, indicative of the diffusive char-

solvent d|sp|acements involved in rotatmg even the Srn"jlllesacter of the dynamics at the observable time scales. With the
molecules are simply too large to permit the kinds of free,

: . . advent of ultrafast fluoresence-anisotropy experiments, how-
high-angular momentum, rotations often seen in the gas

phase. Worse still, the lack of intrinsic intramolecular forces- eh it became possible to measure the sdlp@t) at a

- ; inR3.12-18
controlling a molecule’s rotatiofas opposed to the situation much tfmter: tlgne regolu'[tlr(])?r. : ':'hed.?ct%a;léherg tvr\nlas
with either vibrations or electronic structyréeaves rota- more 10 the dynamics than simple diftus an €

tional dynamics at the mercy of any random, spontaneougeal'zat'on that evenaﬁtq?_zglffusmn reflects a considerable
torques that might happen to be imposed by the surroundintgV€! Of molecular detail™™“"eventually began to be appre-
solvent. So how should we be thinking about the nature of'ad-
the reorientational motions that a molecule does undergo in a  Contributions have begun to appear, as well, from some
liquid? The subject is certainly a venerable dneut the rathe_r d|fferent_k|nds of expenr_nen_ts _mcely attuned to the
ability of newer generations of experiments to probe evefetails of rotational dynamics in liquids. Pulsed terahertz
shorter time scales, and in particular, to begin to get at thééchniques now allow the rotational spectra of molecules in
genuinely molecular features of reorientational dynarfii€s, liquids to be measured reasonably direttfyand optical
make it worth our while to reconsider what theory has to sayerr effect (OKE) methods (in the form of optically
about the precise solute and solvent motions that come intgeterodyne-detected ~Raman-induced-Kerr-effect, OHD-—
play when molecules reorient in liquids. RIKES, studies are starting to go beyond the earliest appli-
There have, of course, been no shortage of experiment&gtions to neat liquids and being applied specifically to the
efforts in this arena, dating back to the earliest studies oflynamics of solute$:~>*In addition, there has been a par-
solute relaxation dynamics’® Nuclear magnetic resonance ticular interest in the intriguing cases of, Hlissolved in
(NMR) studies of spin relaxation timésalong with mea- watef>?® and HCN dissolved in liquid H&’ situations in
surements of depolarized Ram&nand far-infrared and which the quantal character of the rotational dynamics merits
microwavé?! spectra have long been used to find reorientaspecial attention.

tional correlation functions of the form From the theoretical side, most of what we know about
rotational dynamics in dense liquids starts with the informa-
CL(t)=(P_[cosO(1)]), (1.1)  tion provided by molecular dynamics simulaticiis®!

0021-9606/2000/112(17)/7524/14/$17.00 7524 © 2000 American Institute of Physics
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which, in addition to computing the orientational correlation . t .
function, Eq.(1.1), typically focus on the angular velocity lo(t)=— deT n(t—1)o(7)+Mt), 1.3
autocorrelation function

where the functiony(t) generalizes the Langevin equation

(memory-less friction to a time-dependent version((t) is
the so-called fluctuating torque, aht the solute moment of
inertia. Physically, we can think of this equation as dividing

The models used to interpret these results, however, spant3é torque felt by a solute into a dire@tuctuating portion,
rather wide range of conceptual possibilities, tracing the histh® component the solute would feel even if its own motion
torical evolution of our understanding of liquids. Gordon’s had no effect on the solvent, and an indiréiction) por-
extended diffusion modef&, though originally couched in tiOM, the component caused by the back reaction of the sol-

gas-phase terms, were soon shown to be equivalent to &¢nt 0PPosing the solute’s motion. The fact that remb-
independent-binary-collision ~ perspective  on rotationall€culay solvents have to move real distances means that this

behavior® Formal kinetic theories were then proposed back reaction cannot b_e instantaneous._ Hgnce addin_g time
building on this same kind of hard-collision viewpoiftThe depende_nce to the friction serves to build in the physically
kinetic theories needed significant augmentation to accourffO"ect time lag between solute angular veloaityr) and
for correlated recollisions though, so solvent-cage modeldhe torque at any later time _ o _
which stress the librational character of molecular reorienta- 1€ formal statistical mechanical ur_1derp|rf15r71|ngs behind
tion, have frequently been suggested as plausible, if not g&duations such as E€1L.3) are well establishetf:*’ The dif-
microscopically well-defined, alternativé®:3’ ficulty is that in order for us t_o _apply Edq1.3 we r_1e§d to
Actually, a somewhat broader perspective tends to fornfrave a fuIIy_ molecular pre_scnptlon for both the fr_|ct|on _and
the basis of most of the ongoing discussion of rotationathe fluctuat!ng torque. It is true that these two ingredients
dynamics. The idea has its roots in the notion of rotationa!@ve to be intimately connected, as evidenced by the second
Brownian motior?®*! which describes the dynamics fluctuation-dissipation theorem
through a rotational Langevin equation in which the sol- _ e >
vent’grole is to create aotgtional f?iction. Indeed, many of 7(1)=(2keT) " HMD)- MO)), 2.4
the current issues in rotational dynamics can be phrased ia result which follows from the formal derivation of the
terms of the origin and magnitude of such a friction: whetherGLE, as well as from more physical considerati6h8’ But,
the friction is, in fact, anomalous around a solute in superthe abstract projections involved in partitioning the torque
critical solvents'?~** whether hydrogen-bonding solvents into its direct and indirect components makes both portions
lead to a specific solute—solvent complex with comcomitansomewhat unphysical. The time evolution of the fluctuating
effects on the rotational frictioh?>*®and whether the con- torque, for example, can no longer be followed by solving
cept of dielectric frictioi’~>2 (taking into account, if so de- Newton’s laws using the microscopic forces.

Cou(t)=(a(t)- 3(0))/(a(0)- &(0)). 1.2

sired, realistic molecular charge distributioh®) provides a The common solution to this dilemma in problems in-
useful picture of the rotation of polar solutes in polar volving vibrational relaxatioff®® and reaction kinetic§ is
solvents® to make the approximation that the fluctuating solvent quan-

Of all of these issues, perhaps the most crucial from theity (in vibrational relaxation examples, the force on a bond
point of view of this paper is the central theme of how mo-can be replaced by the corresponding physical quantity
lecular one needs to get in order to understand rotationavaluated with the dynamical variable of interé$te solute
friction. Traditionally, hydrodynamic predictioffs>>~>’have  bond length held fixed. With vibrational examples in par-
proven reasonably reliable in accounting for the basic trendscular, the intrinsic dynamics of the vibration is so much
and magnitudes of the rotational friction, especially whenfaster than that of the solvent motion that this approximation
supplemented by corrections for finite solute ¥zand for is usually going to be extremely accurate. Indeed, it is pos-
the free volume between the solute and the solvensible to show that this approximation becomes exact in the
molecules?® But the deficiencies of such continuum modelslimit that the vibrational frequency becomes infinitely
are becoming increasingly clear. The observation of nonextarge®® Much the same approximation has appeared in the
ponential decays for reorientational correlation functions it-literature for the rotational frictiorfixed-orientatiorfrictions
self emphasizes the need to look at more than the diffusivleave been constructed by applying Ef.4) with the actual
motion permitted by simple continuum theorfeS.More to  torques replacing the fluctuating torqié$2?Here, how-
the point, the fact that experiments are now considering thever, it is not obvious that there is any such separation of
evolution in time from inertial to diffusive behavibt*!*  time scales. If our goal is to understand the molecular basis
moves the discussion beyond the level of any theory whiclof rotational friction, we need to ask wignd even whether
does not have individual molecules accounting at least fosuch an ansatz should work in rotational problems.
the dynamics at the shortest times. In a sense, our work here is based on the purely math-

A rigorous way to go beyond the hydrodynamic modelsematical observation by Zwanzig that a dynamical variable
while still preserving the basic idea of a rotational friction is linearly coupled to a harmonic bath will obey a GLE whose
to express the rotational dynamics through a rotational gerfriction (and fluctuating forcecan be written explicitly in
eralized Langevin equatiofGLE).*"%%=% For a linear or terms of the bath variabl€s.’* This realization has been at
spherical top molecule, such an equation takes the form the heart of some of the classic studies of both vibrational
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relaxatiori>"®and chemical reaction dynami€s’®but, with  alization to molecular solvents is straightforward, but our
a few notable exceptior$® the applications have been simple example probably suffices to reveal the essential is-
more schematic than physical because of the lack of a maues. The information of interest to us, the orientation of our
lecular identification of the harmonic modes. What we wantsolute, is specified in the laboratory frame by the andgles
to show in this paper is that by representing the solvent by aand ¢, so we can represent all of the remaining degrees of
appropriately molecular set of harmonic modes, we too enfreedom—those of the “bath”—bR=(f,,r,...,fy), with
up with a GLE describing reorientational motion, but with ar the position vector of the solute’s center of mass and the
clear molecular interpretation of the terms in the equation. remainingf;(j =1,...N) the position vectors of thl solvent
Consistent with our desire to elucidate molecular mechaatoms. Within this notation the total Hamiltonian of the sys-
nisms, the GLE we derive is what we shall calliastanta- tem can be written
neousgeneralized Langevin equation. That is, we shall be
Iookir)g for the rotati_onal dynqmics .Iaunched from an arbi- H= I—(¢2 Sir? 6+ 62) +
trary instantaneous liquid configuration, rather than from the 2
more commonplace, fully averaged, set of initial conditions.
As a result, the harmonic portrait of the solvent that we nee
to employ is based on the instantaneous-normal-nidid )
representation of solution dynamits83 This same strategy
of using INMs to derive instantaneous GLEs has actuallyblit

been wused before in conjunction with vibrational = . . .
relaxatiof*~#® and the resulting expressions for the vibra- 4N'9ue Way to partition the total potential energy of the sys-
tem, V(¢,6,R), into a bath potentialy,, and a potential

tional friction have proven to be a considerable help in un- ) i .
derstanding the mechanisms of vibrational relaxation incouphng the bath and orientational degrees of freeddn,
liquids8~8 In this and the following papef, we shall en- V(¢,0,R)=V,(R)+V(¢,0,R). (2.2)

deavor to see if we can obtain the same kinds of physica\IN_ h si L lecul . ials. f |
insights for the more difficult problem of rotational relax- It S't‘?‘s'te m_termo ecular: pair potent!a S, for example,
ation. each pair potential governing the interaction of a solute site

The remainder of our presentation will be organized aé/vith a solvent atom will contribute to the energies of both

follows: In Sec. Il we show that one can indeed derive anthe solute translation and rotation. However once we decide

instantaneous rotational GLE by using a Zwanzig—typeto focus on the short-time rotational dynamics, it becomes
analysi€® on a short-time version of our Hamiltonian. The clear how to proceed. In the following sections, we construct
procedure is complicated by the intrinsic nonlinearity of the@n approximate Hamiltonian by first defining instantaneous

relationship between the angles describing the orientatio a_th anfd co%ph?ghpote_ntlals andfthr(]en _wntmg the time evo-l
and the angular velocity, but our desire to focus specificall ution of each of these n terms of the msta_ntaneous norma
on the short-time dynamics turns out to provide enough of amodes of the bath. Straightforward application of the classi-

guide to proceed. We discuss some general features of thﬁ?l laws of motion then lead to a generalized Langevin equa-

formulation in Sec. Ill, where we show that our equations do,tIon for the reorientation of the solute.

in fact, embody the exact dynamics in the liquid at the earA. The short-time Hamiltonian for the system
liest times and that the two-dimensiori@land ¢) equations
necessitated by our instantaneous approach to a linear rotg{in
do reduce, quite properly, to a single equation when we con-
figurationally average. We also point out how the statistics of
the instantaneous fluctuating torques ends up not being V,(R)=V(¢g,0,,R), (2.3
Gaussian, notwithstanding the harmonic character of a lig- ) ) i ) ) )

uid’'s short-time dynamics. Section IV contains our first nu-2 choice which defines the coupling potential by difference
merigal results fqr the rotational friction and for the implied V(,0,R)=V(,0,R)—V(dy,6,,R). (2.4
rotational dynamics. We compare these results to those de- ) ) )
rived from exact molecular dynamics and we demonstratd © |00k at the time evolution governed by these potentials,
both the accuracy of the fixed-orientation approximation forV€ now ask how these potentials change as the system

the friction and the reasons why our formalism would predictToves away from its initial configurationg, 6o, Ro). _
that it would work so well. We conclude with a few com- For time scales short compared to those required for sig-

ments in Sec. V, leaving for the companion paPéne next nificant rearrangement of the bath, we can imagine expand-
step of actually making use of our instantaneous rotationdd the bath potential in powers of the bath-coordinate dis-
friction to understand the molecular mechanism of rotatiorP/aceéments, truncating the expansion at second order. This

N| -

N
> mif+V(6,6R), (21
£

herel is the solute’s moment of inertia, and the are the
masses of the solute moleculg=0) and the solvent atoms
(j=1).

The reader may recognize that despite our having
hely invoked the concept of a bath, there will rarely be a

We can define an instantaneous bath potential by evalu-
g the total potential energy with the solute fixed at its
riginal (t=0) orientation

in liquids. step, of course, defines the instantaneous normal modes of
our bath. Briefly, from thgmass-weighteddynamical ma-
Il. DERIVATION OF THE INSTANTANEOUS trix, D(Ry), for a given initial configuration of the batR,

GENERALIZED LANGEVIN EQUATION 1 2V

. . . . DN K (RO):——
The system we shall consider here is a single, linear, jmky Jmm
solute molecule dissolved in an atomic solvent. The gener- Ro

: (2.5
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where ther;,, denotes theuth (w=x,y,z) Cartesian compo-
nent of the position vector of thggh atom, we can construct V(¢,9,R)“V(¢,9.Ro)+§ [Cs.a(d— do)
a set of independent collective coordinatggt), the INMs,

which provide a molecular description of the subsequent wi )
dynamics? If the eigenvector matrix i4J(R,), the charac- +Chal 0 90)]%"'% ~falat 5 o,
teristic frequencies of the modes, are prescribed by the
eigenvalues of the dynamical matrix, (212
- 5 with ¢, , andc, , the transformed coupling coefficients
[U'(Rg)D(Rp)U(Rp) ] o= @5 6ap (2.6 2V
and the modes themselves are defined by the eigenvectors Cdna:% Uju,a%,m:,w Ml y 4 & '
“d.60:Rg
2 (2.13
Aa()=2 U oMLy, (0 =1, (0)]. 2.7 ¢ =S U o, =Y
im 0,0 4 jm,a=0,ju 96 dq
e ' o.00:Rg

It is then straightforward to show that the bath-potential en-,

eray, Vs, is given in terms of these modes by dding the kinetic energy then provides us with our de-

sired short-time formulation for the whole Hamiltonian of

our system,

Vo(R)=Vp(Ro) + X [~ fala(t) + 3050501, (2.8) |
‘ H= 5 (¢?sin’ 6+ 6)+V(4,6,Ro)

where thef , are the transformed forces,

+§ [Cypa(P—Po)+Cpo(0—00)]d,

2

fa=> Uiy oFius Fiu(R)=——— . (2.9
a e ju.a ju IIASAY \/ﬁjarjﬂ . .
—flat 5 O

1
. _ _ 3 > B+ . (2.19
Since the instantaneous normal modes are a natural basis @ @

for dynamics of the bath, the short-time dynamics is revealed Because of the instantaneous character of our approach,
by expanding the coupling in powers of them as well. Thethis Hamiltonian actually depends on the initial configuration
leading term is jusV/ (¢, 6,Ro), what the coupling would be  of the system. Any properly formulated calculation of an
for a frozen bath, but each successive term brings in highesxperimental observable based on E2.14 should there-
powers of the bath INMs. In much the same way, we carfore include an average over the equilibrium distribution of
watch the early evolution of the solute orientation by ex-these configurations. Nonetheless, by being careful to order
panding simultaneously in successive powers of the anglgarms in powers of displacements from the initial configura-
displacements. Note that, by construction, the coupling terntion (rather than say, powers of the coordinates themsglves
corresponding to having the bath evolve at fixed solute oripur the total Hamiltonian ends up being divided naturally
entation,V¢(¢o, 09,R), is identically zero, so that the entire into three physically distinguishable termssalute Hamil-
expansion is of what we might call the puretiynamical  tonian in which the bath variables are fixed at initial configu-

portion of the COUD'!“@-S _ . ~ ration, Ry, abath Hamiltonian where the solute orientation
Explicitly then, if we keep just the leading short-time s fixed at initial value ¢,6), and a dynamic coupling
terms, the coupling potential can be written between the solute rotation and the bath INMs. Equation

(2.14 is the starting point for our derivation of a GLE for

Ve($,8,R)=Ve(,6,Ro) + 2 Vmj[cyj,(B(t)— )~ Solute rotation.
i R . . .
B. Derivation of a rotational generalized Langevin

X(rj () =r.(0))+Cgy;,(6(t)— 6) equation

X(r; (1) =1;,0)], (2.10 Our object here is to derive an effective equation of mo-

. o tion for the solute rotation from the short-time Hamiltonian
where the coupling coefficients, ;,, andc,,;, are constructed in the proceeding section. We begin with the

familiar equation for the classical time evolution of the an-
gular velocity of a linear top. The angular velocity is dictated

by the torque,ﬂ, which in turn is related to the angular

1 5V
C D —
?.j
» ,/mj a¢&rw

¢0:90:Ro ; :
2.11) gradient of the total potential,
1 9V Lo =N v 219
ng. = — w.= J—— —_— ]
e Jmy 900r g, - v gy,

wheredy, is theinfinitesimalrotation angle around theth
Rewriting this equation in terms of INMs and adding the laboratory frame axis. Inserting the short-time potential, Eq.
result to Eqg.(2.8) gives us a short-time expression for the (2.12), into Eq.(2.15), gives us an equation of motion for the
total potential energy of the system angular velocity,
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z frame which coincides with the instantaneous body coordi-

3 nates. By inspection, we see that the infinitesimal rotation
angles around the axes 1 and 2 at that instdutt,(0) and
di»(0), arerelated to the differential angledf, andd ¢y,

2 b
r dy, Y

5 dl//l(o): —sin 90 d¢0, d1ﬂ2(0)=d00 (218)

1 ¢, v The 3 component of the angular velocityg(0), is zero,
> v since we have taken axis 3 to be along the bond axis of the

" linear top. The other components of angular velocity,

o =dy,/dt, are obtained from Eq.(2.18 as w,(0)=

/ — o Sinby, w,(0)=0,. The crucial assumption that brings

% us a GLE is the idea that, for short times, when the orienta-

tion has not changed all that much from its initial angles, the

FIG. 1. Coordinate systems for studying the rotational dynamics of a lineainfinitesimal twist angles are given at timdg}ﬁz
molecule(portrayed here as a diatonnicThe laboratory frame is indicated

by theX, Y, andZ axes; our choice for an instantaneous frame is defined by di(t)=—sinf,dd,, di,(t)=dé,. 2.1
the axes numbered 1, 2, and 3, with the infinitesimal twist angjesand 2l ) odé val ) ! (.19
dy, defined as shown. The angular velocity then follows as
w(t)=— ¢ sinby, w,(t)=6;, (2.20
. NV(¢,0,Rg) 2 d¢ and the 3 component of the angular velocity is assumed to
lw,=~— a4 Coa ) remain zero.

The short-time approximations, Eq®.19 and (2.20),

a0 together with the solution for the bath INMS, E(.17),
+Coa 77| |dalV), (218 allow us to eliminatens(t) and rewrite Eq(2.16 as a rota-
‘/’7 t .
tional GLE,

which also depends on the dynamics of the bath INMs. How-

ever, the time evolution of each INMy,=—(dV/dq,), is . 2

simply that of a forced harmonic oscillator, which we can lw,=N,(¢,0, Ro)—;l fo In(t=7)-wy\(7) d7
evaluate, at least formally, as

sine t f +N()  (y=12), (2.21
Ga(t)=9a(0) o, T ;g(l—cos%t) with each term on the right-hand side of the equation having
a suggestive physical meaning. ThHezen-bath torque
t 1-codw,(t— . . i

_f dr iwz( T)][C¢,a¢(7)+co,a9(7)]- N,(¢,6,Ro), defined as

0 Ve NV
(2.17) Ny(()bvevRO):_W , (2.22

Y RO

With this expression we could derive an effective equa-
tion for the solute orientation simply by substituting the represents the torque the solute would feel if the bath were
g.(t)’s into Eg. (2.16). Indeed precisely this strategy was frozen at the initial configurationR,. The fluctuating
used by Zwanzig in his derivation of a GLE from a generaltorque N,(t),
harmonic batH? and by us in our derivation of an instanta-
neous GLE for vibrational relaxation based on INfS>In N,(t; b9, 00,R0.Ro)=— > C,
the present case, however, the result would be a complicated @
nonlinear equation which would not easily lend itself to writ- f
ing in a GLE form. For us to obtain an equation with the + —5(1—cosw,t)|, (2.23
structure of a GLE we shall need some further approxima- Wq

tions, ones actually suggested by our short-time perspectivedrises from the solvent fluctuations one would see with the

We can obtain precisely the rotational GLE we desire |Oyiolute orientation fixed at its initial angleg, and 6,. Fi-

choosing a special coordinate system for the resolution o ally, the self-consistent dynamical interaction between the

angular velocity and by making a short-time approximationbath and the solute appears as a convolution of the angular
for the dynamics of the angle displacements. For a given

L : . . velocity and therotational friction matrix defined as
initial orientation of the solut€Fig. 1), let us resolve the

angular velocity,w, along the three mutually perpendicular CoSw, t—1

axes 1, 2, and 3, where the axis 3 parallels the bond axis of nﬁ(t;%,ﬁo,Ro):% Cralra 2 (2.24
the linear top, and the axis 1 is in the plane made by the bond “

axis and thez axis of the laboratory-fixed frame. That is, for with the c, ,s in Egs. (2.23 and (2.24 the coupling
a given initial orientation we switch to a special laboratory strengths of each mode,

Sinwt

04(0)

Wy
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N,
Cy,a(¢0!601 RO):_aq . (225)
“Tg.60.Ro

Note that as far as the solute orientation goes,(E@.])
is a properly nonlinear generalized Langevin equation; the
frozen-bath torque contains all the nonlinear dependence on x X
orientation necessary to give the exact torque on the solute _ ) .
for a fixed bath configuratiorR,. Consistent with the rest of FIG. 2. A gseful symmetry operation: rotation of thg Ilngar moleculerl®/ .

around axis 3. Under this operation, the total Hamiltonian and the configu
our short-time development though, we know that if we de-ration of the system are unchanged, but the infinitesimal twist angles around
sire no more than short-time results we would also be justithe axes 1 and 2 vary as shown in Eg.1).
fied in expanding this torque to low order in the angle dis-
placementgjustified, that is, to precisely the same extent that
the linearization of intermolecular forces in the bath to pro-
duce INMs is justifiedl® Consider what happens if we do
Sso.

Expanding the frozen-bath torqui, (¢, 6,Ro), up to
linear terms in the angle displacements yields

The instantaneous linearized rotational generalized
Langevin equation, Eq.2.27), along with the microscopic
definitions of the rotational friction, Eq2.24), and the fluc-
tuating torque Eq(2.23, constitute the primary results of
this paper. Using the explicit representation of the bath dy-
N,(¢,6,Ro) namics provided by INMs, we have reduced the calculation
of the short-time reorientational dynamics of a solute to a

~N On-RA)+ 1 9N, single integro-differential equation for each configuration,
~ y(¢o, 0,Ro) + 5 . . e .
sindy d¢ 9.0 Ry one relying on nothing but the equilibrium properties of that
configuration. However, we still need to establish in what
dN sense this result is really correct for short times—and just
i — Y _
X (Sin6o) (¢ = o) + a6 6060 R (6= 6o) how we can make use of the equation in practice. To do so
0700 we need to investigate a number of the special features of our
oN,, t instantaneous GLE.
“Ny(do.o R+ 5! [ drenn)
Hy,00,Ry” ©
+<9Ny tdrw ) (2.26 Ill. CHARACTERISTIC FEATURES OF THE
Py o A ' INSTANTANEOUS GLE

¢0"90'R0

A. Some useful symmetries
With this expansion, which would be exact if we had purely y

harmonic libration, we get a linearized GLE, In formulating our dynamics we were careful to choose a
set of laboratory coordinates coinciding with those of the
solute’s time-zero body-fixed frame. Because of this special
choice, and because of the linear geometry of our rotor, we
can derive a number of symmetry properties that greatly sim-

2 t
(0, Ny(90.00.R0) = 3, [ @102+ 3,0 (1= 7]

X w)\(7)+N(1), (220 plify the further analysis of our GLE. These symmetries will
where theinstantaneous librational frequenayatrix, 2., , not only help us i_nve_stigate the (_axact sh(_)rt-time behavior of
is defined as the angular velocity time correlation function generated from

our GLE, but they will also allow us to study the
configuration-averaged rotational-friction and instantaneous-
librational-frequency matrices. The symmetry arguments
will also be helpful in the looking at the distribution of fluc-
Parenthetically, were we to turn off both the friction and tuating torques.
fluctuating torque in the GLE, freezing the dynamics of the  Consider the symmetry operation of2 rotation of the
solvent completely, Eq.2.27 would portray the rotation of linear top around axis 8Fig. 2). Under this operation, the
the solute within each separate static solvent configuration gafinitesimal twist angles change as

a libration:
) dip——dipy, dip—dyy, (3.1

,t > Qimzo. but the Hamiltonian and the configuration of the system re-
A=1 main unchanged. The transformations of the torques=
More generally, what a GLE gives under such circumstance (¢V/d¢,), and the angular velocity,,=di, /dt, follow
is the purely inhomogeneous contribution of the solvent todirectly as
the dynamics of the solute. Our instantaneous perspective Ni— — N No—s N
. . .. . 1 2 2 1
therefore identifies our frictiotiand our fluctuating torque
as the source of rotational dephasing for each liquid configu-  Using the fact that any ensemble average we compute
ration. should be invariant to these transforfsine can prove that

2
, 1 #v

T 228

Ro%o: 0o

W1— —wy, wy—w. (3.2
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TABLE |. Transformations of various quantities under the symmetry operation which rotates a linear molecule
by #/2 around axis 3.

From Cia Coa 711(t) 72At) 71At) Qil Q%z Q%z Ni(t) No(t)

To “Cou  Cip  mAt)  mu()  —mt) Q5 05 —0F, AN M)
N1(0)2)=(N,(0)2) = XN(0)2), t2 4] 2
(01(0)%)=(w,(0)?)=x®(0)?), ' A=l
and that the corresponding cross terms, such as 1 5
(N1(0)N,(0)), are zero. Thus we have the general principle T % Claf |t - 3.7

that axes 1 and 2 must be statistically equivalent.

What happens under this same transformation to the keBut, if we evaluate thep integration in the mean-squared-
quantities in the instantaneous GLE, the coupling constantdnstantaneous-librational frequency, (QZ%)=(11)
C,., the friction matrix, 7, (t), the instantaneous- X(cs€ 6 (#VId¢?)), by integration by parfS we find
librational-frequency matrix,(,,, and the fluctuating

: bod in T 1 aV\? 1 oV \?
torques, V. (t), is described in Table I. From the table, we 2\ _ VN oV
I - - Q1) csch
see that the average diagonal elements of the friction and IkgT d¢ IkgT \ | 94y
librational-frequency matrices are also identical,

(D) =(n2a1)), (QF)=(Q3), (3.9

and the off-diagonal elements such(ag(t)) and(QZ,) are ) .
zero. We see that the mean fluctuating torque must vanish Juhere the symmetry property, E@.3), is used to derive the

~(N(0)?)
~ 2lkgT ’

(3.9

well. last identity. Therefore we see that th& coefficient of
Cc"M(t) is exact.
(NM1(1))=(N>(1))=0. (3.5 What about the* coefficient? We note
In an average sense, then, our instantaneous rotational gen- N 2 o
X . . o 1. 1
e.rgllzed Langevin equation Iqoks much t_he_ same as the tra Nl(o)zz —1;,(0)+ > ——,(0)
ditional, diagonal, GLE given in Eq1.3). Similar symmetry m i N=1 9y
arguments based anrotations about the laboratory axes can 2
be used tp ShOW hpw the more conv_entional Glderived :z ‘7N1-rm(0)+ z |in>\(0), (3.9
formally via projection operator techniqyesan always be i I =1
reduced to a diagonal form for linear and spherical top

enabling us to write the* coefficient from the exact MD &%

80-{ ) 13 31241 e

e \Mp L,

rotors>*

B. Comparison with the exact short-time behavior

Though we hope the development here will be appropri-This equation matches the corresponding coefficient from
ate for 100’s of fs rather than 10’s of fs, it is important that INM—GLE, except for the second term on the right-hand
we know how the formalism behaves at the latter, ultrashortgide. But if we notice the identity,
time scales—time short enough that a low-order power series IN\ 2
in t suffices. We therefore need to compare the leading terms <E C§a> _ < z ( 1) >
in the expansion of an exact correlation function with those a e P

predicted by our instantaneous GEEThe exact short-time 2
expansion of the angular velocity time correlation function, _ 2 U. 1 9N
C,.(1), for a linear top is, for example, well known, e \ T2 my o
> = 2
t2(N(0)2)  t* (N(0)?) —<E 1 (07N1) >
-1 — — + — e, . —\ « U ’ (311)
Con(=1-7 2IkgT 4! 2IkgT 3.6 AU AL
To evaluate this same time correlation function from ourarising from the orthogonality of the) eigenvector matrix,
GLE, we first obtain expressions for the initial time deriva- we see that the* coefficient of C'\V(t) is also exact. Thus,
tives of the angular velocityw,(0),»,(0),... from the despite the approximations used in deriving it, the INM—
INM-GLE, Eqg. (2.27), and its successive time derivatives. GLE is guaranteed to produce the exact short time behavior
After expanding Eq(1.2) in a powers series i, a little  for the angular velocity time correlation function through

algebra then yields the equivalent INM—GLE correlationordert. Higher orders are, of course, also included, but not
function, C'""M(t), with the same quantitative accuracy.

w

a
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C. Distribution of the fluctuating torque Gaussian is different for each liquid configuration; our final
The fact that our fluctuating torque is defined by a fully result is actually a configurational average of Gaussians
molecular expression instead of by just the typical set of (N—Ny(t))z

1
statistical properties one normally sees with a GLE means D(N)=< exp{ >
2 . N 2 20.(t
that we cannot take these statistical properties for granted. 2ma,(t) 7(t)

Indeed, the ability of the instantaneous approach to incorpowith time-and configuration-dependent means,
rate realistic non-Gaussian features of the statfStfsis

> , (3.19

part of its power. We therefore conclude this section by de- 7 ()= _Z C%afa(l_COSw t) (3.16
riving some formal properties of our fluctuating torque from 7 a W, “

our instantaneous GLE and by studying its statistical distri

. L - ’ ‘and variances,
bution within a specific numerical example.

. . . 2
We f h h Cya .
e. irst note E at, c;onsstent wit st_andard_ Lfs_age, our Ui(t):kBTE ( Y, smwat) . (3.17
fluctuating torque \V(t), is uncorrelated with the initial an- a | W,

gular velocity,(0): Our distribution of fluctuating torques, therefore will not, in

(cB(O)-j\T(t)>=O, (3.12 genera}I, bs% Gaussian despite the harmonic character of our
formalism:

since/\7(t) is a function of configuration only. Moreover, as The defining property of a Gaussian distribution is, of
with the usual expectations, we can show that the fluctuatingourse, that all the cumulants higher than the second order
torque autocorrelation function is related to the rotationaldisappear. To see just what our distribution looks like, we
friction. Note, however, that our instantaneous friction andcompare the full distribution, E43.15), to the outcome from
fluctuating torque are defined so as to vanish at time zer@ second-order cumulant expansion. The first cumulant,
meaning that their strict analogues in conventional GLE for{,(t)), is zero by symmetrySec. lllA), and the second

malisms would be the displacementig(t) — »(0) andA{(t)  cumulant is given by

—/\7(0). As discussed in the previous wofkthis choice is

not unique, but it suits the short time nature of our approach. C2:<0-y(t)2>+<
At time zero, the torque on the solute is given by the exact

instantaneous torqueN( 6y, $o,R,), but the fluctuating In Fig. 3 we 'plot the disFribu_tion of the fluctuating torque
torque and the friction grow in as the system evolves, bring@nd the Gaussian approximation for it for a homonuclear
ing in the dynamics of the interaction between the solute andiatomic in an atomic solvent. As the time increases, the
the bath—bringing in, in particular, the torque on the soluteather sharp distribution seen at the shortest {26 f9
caused by the bath’s own dynamics and the “reaction-field”@Ppears to stretch out to a nearly uniform distribution at the
torque generated by the bath’s response to the solute roti2ngest time(2.16 p3[The distribution actually broadens
tion, respectively. With this feature in mind, we can under-Without a I.imit fqr an infinite time, because the variance for
stand why Eqs(2.23 and(2.24) tell us that the INM version ~€ach configuration, Eq3.17), diverges, a consequence of
of the second fluctuation-dissipation theorem is the short-time character of our thedf. The interesting
point for us, though, is that the Gaussian distribution is found
to be noticeably broader than the exact distribution at the
shortest times, but the differences seem to become less pro-

N L nounced at the two longer times display&d.
(where we have used the equipartition of the initial INM

velocities (q,(0)q4(0)) =kgTd,4, and the fact that the off-
diagonal elements of the friction matrix vanish by symme-
try), rather than the usual, twice-integrated, version of thdV- THE AVERAGE ROTATIONAL FRICTION
same equation. A. The rotational friction spectrum

We turn, finally, to the distribution of the fluctuating
torque itself,D(N),

Cy afa
> L5 (cosw,t—1)
a w

o

2
>. (3.18

2

d 1 . :
W<nyy(t)>:_kB_T<Ny(t)Ny(o)> (3.13

The most physically revealing quantity arising out of our
generalized Langevin formalism is the instantaneous rota-

D(N)=(5[N—Ny(t;¢0,00,R0,R0)]>. (3.14) tional fription, Eq.(2.2_4); it is what .sets the time scales and

mechanisms for rotational relaxation. However, as we shall

(In this and all the remaining equations in this section, thesee presently, most of the physical content of the instanta-
subscripty is meant to denote either of the two axes 1 and Znheous friction is embodied in its configurational average. We
shown in Fig. 1; the final answers are invariant to thewill therefore focus on this average for the remainder of this
choice) In contrast to the friction and librational frequency, paper.
which rely solely on the initial configuration, our fluctuating As we have written it, the instantaneous rotational fric-
torque has an additional dependence on the initial velocitiegon is given as a X2 matrix. When averaged over the
of the bathR,. This dependence is easily integrated analyti-configurations, though, the friction matrix becomes diagonal
cally though, and as we might have expected, when we peby symmetry, with the diagonal elements of the matrix iden-
form the velocity average indicated in E@®.14) we do find tical to one another. Thus the average friction reduces to a
a Gaussian distribution. The nontrivial feature is that thepurely one-dimensional quantityneaning that we can drop
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FIG. 3. Distribution of the fluctuating torque calculated from our instanta-
neous GLE for a homonuclear diatomic dissolved in an atomic fluid. For
comparison we also plot the Gaussian distributions with zero mean and the
same variances as those predicted by our GLE. In this and all succeedirfgG. 4. The average rotational friction spectrym.(w) (top) and three
figures, the solvent is Lennard-Jonesium under dense, supercritical condiepresentative instantaneo{ssngle-configurationfriction spectra(bottom

tions (reduced temperaturkgT/e=2.50 and reduced densifyo=1.05, for a homonuclear diatomic dissolved in a dense supercritical argon fluid.
with e ando being the Lennard-Jones well depth and diameter, respegtivelyThe model and thermodynamic conditions are as reported in Fig. 3, with
and the diatomic is modeled as two Lennard-Jones atoms, identical in mas®nfigurational averaging carried out over 40 000 configurations. In the top
and Lennard-Jones parameters with those of the solvent. For this exampleanel, we also plot the solvent instantaneous-normal-mode density of states,
the atoms in the diatomic are separated by a rigid bond ledgth.25. D(w), normalized so as to have the same area as the friction spectrum. The
The three different panels correspond to the distribution evaluated at threlgottom three panels all have the same vertical scale as one another, 3.75
different times, 21.6 fs, 216 fs, and 2.16 ps, averaging each over 40 000mes that of the top panel, and include the average rotational friction spec-
configurations. The numerical values shown are those for an Ar soleent trum for comparison.

=119.8 K ando = 3.405 A), for which the natural time scalg ;=2.16 ps.

@/2mc (cm )

The physical interpretation of the rotational friction spectrum
is compelling: each mode with frequeney, contributes to
the spectrum to an extent determined by its coupling
strength,ci, and the final spectrum is simply the configura-
tionally averaged sum of the contribution of each mode. The
rotational friction spectrum is thus amfluence spectrurof a
kind familiar to us through the INM studies of solvation and
vibrational relaxatioff”#89%1%ts natural counterpart, and a
useful comparison is the liquidd@ensity of statedD (w),

the subscripts in our subsequent Jusehe diagonal element
of the average matrixy™M(t)(={711(t))={(7.2(t))), can
be written as

CoSw, t—1
2> , 4.7

n'NM<t>=<E (Ca) 2
a w,
wherec,=(JN/dq,) andN is the torque along an axis per-
pendicular to the axis of the linear top.

It is useful, as in other INM treatments of solute
relaxation®’ to introduce therotational friction spectrum

pric(®),

D(w)—<(3N+3)1E S(w—wy)), (4.5
which has a constant weighting for every mode.

In Fig. 4 we show a typical rotational friction spectrum,
one for a homonuclear diatomic dissolved in a dense super-
critical fluid of argon. Despite the relatively low probability
of seeing high-frequency modéss evidenced by the density
of state$, high-frequency modes make a significant contri-
bution to the rotational friction spectrum. The peak fre-
quency ofpgic(w) occurs at the relatively high frequency of
136 cm'%, and the area under the imaginary branch, which
amounts to 18.2% of the total area of the density of states, is
almost negligiblgless than 1% of the total areen the rota-
tional friction spectrum. This same kind of shift to a higher
frequency compared to the density of states and this same
near irrelevance of the imaginary branch have also been
found in the vibrational friction and solvation spectfa®

pfric(w)_<2 (Ca)za(w_wa)>u (42)

which lets us write the average friction"M(t), and its
Fourier transform%'"(w), as

coswt—1

7"M(t) = J dw pgic(w)
and

% am icl W
%‘NM(w)zf dtcoswty(t = = 2ele) Lo
0 2 o

4.9
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FIG. 5. The time-domain rotational friction for a homonuclear diatomic E 8 -z —]
dissolved in a dense supercritical argon fluid. The model and thermody- & 0 | ]
namic conditions are as reported in Fig. 3. Plotted here are the friction E 0 50 100 150 200 250 300
kernels extracted from exact molecular dynamics simulations, both by rig- = -1
; i S : . ; ) o) w/2nc (cm )
orous inversiorisolid line) and by using the fixed-orientation approximation e
(short-dashed line as well as those predicted by the instantaneous-normal- g ST \‘ T I 7 T exactMD
N i E 4k
mode theorylong-dashed ling o 3 AN d= 03250 ------ fixed orientation
N -—-INM
For comparison purposes, we illustrate at the bottom of the = L T -
figure the friction spectra for several individual configura- 8 ol 1 o 1 . M= .
tions. In contrast to the averaged spectrum, these spectra = 0 30 100 150 200 250 300
consist of well resolved peaks whose locations vary tremen- /2nc (em )

dously from configuration to configuration, making clear the 6. Th . . - :
. L . . . 6. e frequency-domain rotational friction for a homonuclear di-
role of the strong inhomogeneity in broadening the singlexomic dissolved in a dense supercritical argon fluid. The model and ther-
configuration Spectr%l7.‘88 modynamic conditions are as reported in Fig. 3, except that here we con-
Once we evaluate the rotational friction spectrum, thesider  diatomics ~ with  three  different  bond  lengths d (
time-and frequency-domain friction kernels can be Calcu_=1.25rr,0.6&r,0.325r). Note the significant differences in the magnitudes
. q y . of the friction for the three examples. As in Fig. 5, the results from both
l‘tited by us_lng _EqS(.4.3) and(4.4). In Fig. 5 we compare the exact (solid) and fixed-orientationshort dashedmolecular dynamics are
time-domain friction kernel fronpy.(w) to the results from  compared with those from INM theoiyong dashel
exact molecular dynamig&nd to the results from the fixed-
orientation molecular-dynamics calculations that will be dis- . _ o .
cussed in Sec. VIBfor a homonuclear diatomic dissolved in Simulation Ey a numerical method similar in spirit to Berne
an atomic solvent(For this, and all of our subsequent calcu- and Harp'$® approach to calculating friction. Explicitly: dif-
lations, we shall omit any contributions there might be fromferentiating Eq.(1.3) gives us a self-consistent equation for
the imaginary modesWe first notice that most of the essen- 7(t),
tial dynamics of the exact friction occurs within 200 fs, il- ) t _
lustrating short-time character of rotational friction. The — 7(t)=— |wa(t)—f dr p(7)C,,(t— 7). (4.6)
INM friction precisely duplicates the abrupt falloff of the 0
exact friction for short times, although it decays too quickly To calculate the time derivatives &, ,(t) needed in Eq.
after 100 fs, and slowly diverges to negative infinity at(4.6), we fit C,,(t) from the molecular dynamics with a
longer time<® In the frequency domain(Fig. 6), the INM sixth order polynomial irt and analytically differentiated the
frictions are much more appealing, nicely reproducing theresulting functional form®21% with C,(t) and C,(t)

basic frequency range and much of the qualitative behaviothus obtained, the friction kernel is calculated by propagating
They do slightly overestimate the exact frictions at interme-g discretized form of Eq4.6),
diate frequenciegup to 175 cm?) and die too quickly be-
yond that frequencyFig. 6). Moreover, at zero frequency,
the INM frictions are qualitatively incorrect, with @ * di-
vergence setting in as the frequency approaches 2&ro.
Nonetheless, the INM frictions are in reasonable agreemen
with the exact results for all but the lowest frequencies. In" X" . . S

. : This method of computing the exact friction is not only
particular, the INM theory, being a molecular theory, suc-__ . " . . .

. .an indirect, numerically involved procedure, it makes the

cessfully captures the two-orders-of-magnitude change in

friction created by varying the bond length of the diatomic. microscopic Interpretation of the fncuoq difficult. A _mugh
more physical and numerically practical approximation

would result if we were allowed to use the second
fluctuation-dissipation theorerfEq. (1.4)] to compute the
friction, but with the fluctuating torque replaced by the real
In order to obtain the last two figures, we computed thetorque of a hypothetical reference system in which the ori-
exact rotational friction,n(t), from a molecular dynamics entation of the solute was held fixed. As we noted in the

n—-1
n(tn>=—léww<tn)—dtk§0vvm(tk)c':ww(tn—tk), 4.7

here Simpson’s rule is used for the integral weightings,

B. The exact friction and the friction at fixed
orientation
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Introduction, the analogous calculation ofigid bond fric-  However, using symmetry properties we can drop the sub-
tion is, in fact, commonplace in studies of vibrational relax- script, y in Eq. (4.12), leaving
ation. There however, the justification involves a presumed 1

. . . - - » coswt—1
separation of time scales between the tagggéurating) de- n}g‘(gﬂd(t): —(N(O)2>¢ P +f do pfiged ©) ———,
gree of freedom and the surroundirfs.acking any such 2kgT o0 Jo ®
separation for rotation, we need to examine whether this kind (413
of approximation really provides a sensible alternative. where the fixed-orientation friction spectrumigyeq( ), is

To produce the rotational version of the rigid-bond fric- defined as

tion we evaluate the torque autocorrelation function holding
the solute fixed at its initial orientatioe and 6y, giving us Prived @) = < > (c,)28(w— wa)> i (4.14
the instantaneous fixed-orientation frictip@iyeq(t), a G000

1 . - Furthermore, we can remove the constraint of fixed orienta-
ixed 1) = 2kBT<N(t)'N(O)>¢0"’0’ 48 ion in the averages of Eq$4.13 and (4.14), because the
configuration spaces sampled are identical whether or not the

Where()xo means the gverage witk fixed at the _|n|t|al. orientation is fixed. Thus the fixed orientation friction within
value X, and the torque is the real torque on the orientation{nm theory can be written as

ally frozen solute. Clearly, fixed orientation friction kernels 1
calculated from molecular dynamig¢figs. 5 and $ do an INM () N(0)2)+ »NM(t 41
exceptional job in replicating the exact results over the entire Tixed V) 2kBT< O+ 77, (419

range of time and frequency: with the exception of frequeny,hich aside from the constant offset, is equal to the average
cies less than 25 cnt or so, they are hardly distinguishable friction, 'NM(t), from the instantaneous rotational GLE.
from the exact frictions. From the instantaneous perspective, then, configurationally

Despite this quantitative success, we are left with they, e 4qing the friction is precisely equivalent to evaluating it
question of why the fixed-orientation frictishouldwork as by freezing the tagged solute degree of freed8nis
well as it does for rigid rotors in liquids. Unlike the situation

with vibrational relaxation, the characteristic frequencies for

rotation are rather low. In the gas-phase rotation is a zeroe. Homogeneous dynamics from the average friction
frequency excitation, and even in a liquid the librational fre-

uencies /27rc) tend to be well under 100 cm for all o :
d ,,f2mc) averaging, it is worth asking ourselves whether the average

of the Ar solvent example¥. Within INM formalism, ¢ . frict iah Il suffi
though, we can prove that this fixed orientation friction js Of our instantaneous friction might very well suffice as an

identical (within a constant offsgtto the average friction ingredient in our instantaneous GLE. Certainly, in principle,

obtained from our instantaneous GLE: The torque on th&"€ need not make any such approximation. One could, for

nonrotating solute can be expanded to linear order in INMngample, golve our mstant.aneous GLE, EZ]ZD.’ for each
liquid configuration to obtain the angular-velocity autocorre-

oN,, B lation function, C,,(t). Multiplying Eq. (2.27) by w,(0)

aq, 9o (y=12), (4.9 and taking the average over the initial angular velocities
gives us a matrix equation for the correlation matrix,

where we have chosen the special coordinates as befor@wy(t)wx(o)), for a given initial configuration. By then

Since the orientational variables of the solute are held fixedsolving for the correlation matrix for each configuration and

the time evolution ofg, is given by Eq.(2.17) minus the  taking the average of the results over configurations, we

Given the simplifications afforded by configurationally

Ny(t)~Ny(O)+§

convolution term would get the desired, fully averaged, angular-velocity auto-
sino t f correlation function. But instead of pursuing this compli-
da(t) =0,(0) “+ —5(1—cosw,t), (4.10  cated strategy, consider the much simpler route of replacing
Qa Do both the instantaneous friction and the instantaneous-square
so that librational frequency in our GLE by their configurational av-
erages:
N (H)N.(0 =(> (aNy i t 4.1 t
(N,(ON(0)) 45,0, @ |00, C0S0a - @i l'éo (t):_f dr{1Q2+ 7™"M(t— 7). (1) + N(1),
b0, Y 0 4 Y
Integrating Eq(4.11) twice with respect to timé® gives us (4.16
an expression for the fixed orientation friction within INM where Q is the rms value of the diagonal element of the
theory, 7iyed(t). instantaneous-librational frequency

0°=(0%)=(0%). (4.17

This same approach has been found to be virtually exact
IN,\?cosw,t—1 in the INM study of vibrational relaxatioff. Physically, it

<Z¢ ( aq ) T> (4.12 seems sensible that this preaveraging corresponds to the lim-

“ $0.% iting case in which the solvent fluctuates rapidly compared

1
Tixed t) = |(B_-|-<Ny(0)2>¢0,00

a
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100 T oD the exact results—the minima for the longer two bond
075 I~ _ e lengths and the relatively slow and monotonic decay for the
= d=125% |- fixed orientation ) .
= 0.50 — CLINM shortest bond length displayed. Betrayed by their fundamen-
Us 025 [~ tally short-time character however, the INM correlation func-
0.00 — tions begin to deviate from the exact MD results after around
-0.2500 150 fs and fail to decay to zero at longer times.
1.00 .
0.75 i ! ! ——exact MD
9 0'50 I d=0.65¢ |... fixed orientation
Chea ___INM V. CONCLUDING REMARKS
O° 025 = Y i
000 — ° — e ‘ ] Our focus here has been on the influence of a liquid
-0~250 0 o2 ‘ 04 T o6 08 ' 0 environment on how a linear solute reorients at short times.
' ' Ct(ps) ' ' As in vibrational relaxation, the notion that we can describe
1.00 much of the dynamics of the surrounding solvent by instan-
——exact MD >
= %P I \d=03256 | .. ed ortentation taneous normal modes lets us represent the complicated
~g 050 | L INM solute—solvent dynamical coupling with an instantaneous
Us 0.25 1 generalized Langevin equation for the solute coordinates of
0.00 N T interest. More to the point, we are able to produce genuinely

-0.25 microscopic definitions for the rotational friction and the

fluctuating torque. Our development of a GLE formalism has
t(ps) not been straightforward as it was with vibrational relax-
FIG. 7. Normalized angular-velocity autocorrelation functions for a homo- oM, both be(_:ause of the_ need to represent the S_peCIaI ge-
nuclear diatomic dissolved in a supercritical argon fluid. The models anddmetry of rotational dynamics and because of the differences
thermodynamic conditions are as reported in Fig. 6. The correlation funcin how a solvent interacts with rotational degrees of freedom.
tions are calculated by using friction kernels derived from exselid) and — Ngnetheless, we find the resulting rotational friction and the
fixed-orientation(short dashedmolecular dynamics, and from INM theory | . h | loci be simil
(long dashel Imaginary mode contributions have been removed from thecons'e_querlt re axgnpn of the angu a.r velocity to .e S'm' arto
INM results in the standard fashion. the vibrational friction and relaxation of the vibrational-
mode velocity. More profound aspects of this similarity will
i the rotational relaxation of the solLte. iust as in B be discussed in the companion paper.
wi € rotalional relaxation of the Solute, Just as In Brown- - tpq instantaneous rotational friction we calculate does

ian motion of a heavy patrticle in a light solvent. The soluteSeem to be reasonably accurate over a wide range of frequen-
then sees the friction and instantaneous-librational frequenCé(ies but, as with its vibrational counterpart, it has difficulty
effectively averaged over these solvent fluctuations. To thclan reproducing the correct behavior at both very high and
extent to which this pictulre i; correct, we need to _thi_nk of thevery low frequencies. Indeed, the low-frequency divergence
solute dynamics as falling into theomogeneousimit as ¢ o,/ friction seems to be a fundamental consequence of the
opposed to a purely static solvefilhomogeneouslimit, ¢t time assumptions of the theory. However, our recent
where, as discussed in Sec. Il B, the solute rotates in a f'Xeé};periences with high-frequency vibrational relaxation sug-
solvent cage. , _ gest that the high-frequency deficiency can probably be rem-
This homogeneous dynamics of the angular-velocCity auggieq fairly easily within an instantaneous thedi§/If the
fcocorre_latlon fur_‘Ct'onwa(t)’ is governed by the integrod- analogies hold, the physical events leading to the highest-
ifferential equation, frequency response are largely going to be rare but violent
. S few-body interactions. As a result, the high frequencies are
Coult)=— fodT[Qer(l/')’llNM(t_T)]wa( 7). (4.18 going to correspond to even shorter time scales than those
that dominate the center of the solvent band, but with ampli-
This equation is actually formally identical to the dynamicstudes for the relevant potentials, forces, and torques which
of the bond—velocit_y correlation of an oscillator with renor- are significantly larger. The bilinegone-phonoh coupling
malized frequency) and reduced madsseen in GLE stud- assumed in Eq2.14) is therefore going to be strongly sus-
ies of vibrational relaxatiofi® Using the INM friction and  pect; higher-order, multiphonon, couplings will undoubtedly
the rms-librational frequency, we solved Eg.18 numeri-  be needed.
cally using the method of Berne and Harpln Fig. 7, we We do note that the use of bilinear couping was critical
show the results: time correlation functions from the INM-, to our derivation of the instantaneous rotational GLE, so
exact-MD, and fixed-orientation-MD friction kernels plotted much so that it is unclear how to go beyond this weak cou-
for a homonuclear diatomic in dense supercritical argonpling assumption without losing the GLE structure. We can,
Note the relatively fast decay of the angular velocity corre-however, include nonlinear couplings within the fixed-
lation functions, especially for the two longer bond lengthsorientation approximatiofwhich we have found to be virtu-
displayed. The correlation functions from the INM—GLE ally quantitative. To do so we observe that the torque per-
precisely reproduce the exact correlation functions for timegendicular to the bond axis of the linear told, can be
up to about 120 fs. They also mimic the overall features ofexpanded to any desired order in the INMs,
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