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The short-time dynamics of molecular reorientation in liquids. I.
The instantaneous generalized Langevin equation

Joonkyung Jang and Richard M. Stratt
Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 29 November 1999; accepted 7 February 2000!

Up until relatively recently, experimental measurements of the rotational dynamics of small
molecules in liquids were largely confined to seeing the effects of rotational diffusion. The
molecular character of the process seemed of little relevance. However, newer measurements have
begun to look in some detail at the microscopics behind molecular reorientation. We show in this
paper that it is possible to understand the short-time dynamics of rotation in liquids at a molecular
level by looking at the instantaneous normal modes of the remaining degrees of freedom. With the
aid of some other, properly short-time, approximations, the reorientational dynamics can be cast into
the form of an instantaneous generalized Langevin equation—one defined for each liquid
configuration. One therefore obtains fully molecular expressions for the instantaneous rotational
friction and fluctuating torque felt by a solute. The average friction so obtained seems to describe
the basic nondiffusional aspects of rotation reasonably accurately and lends itself—as we illustrate
in the companion paper—to more detailed investigations into the actual molecular mechanisms
behind rotational relaxation. In the course of this work we also show that just as the autocorrelation
function for the force on a rigid bond yields an accurate portrayal of the friction needed to study
vibrational relaxation, quantitatively accurate results for the rotational friction can be provided by
using molecular dynamics to compute the torque autocorrelation function for an orientationally rigid
solute. © 2000 American Institute of Physics.@S0021-9606~00!50217-7#

I. INTRODUCTION

While molecules tend to have much the same vibrational
and electronic character in liquids that they do in isolation,
the same is clearly not the case for molecular rotation. The
solvent displacements involved in rotating even the smallest
molecules are simply too large to permit the kinds of free,
high-angular momentum, rotations often seen in the gas
phase. Worse still, the lack of intrinsic intramolecular forces
controlling a molecule’s rotation~as opposed to the situation
with either vibrations or electronic structure! leaves rota-
tional dynamics at the mercy of any random, spontaneous
torques that might happen to be imposed by the surrounding
solvent. So how should we be thinking about the nature of
the reorientational motions that a molecule does undergo in a
liquid? The subject is certainly a venerable one,1 but the
ability of newer generations of experiments to probe ever
shorter time scales, and in particular, to begin to get at the
genuinely molecular features of reorientational dynamics,2–6

make it worth our while to reconsider what theory has to say
about the precise solute and solvent motions that come into
play when molecules reorient in liquids.

There have, of course, been no shortage of experimental
efforts in this arena, dating back to the earliest studies of
solute relaxation dynamics.1,7,8 Nuclear magnetic resonance
~NMR! studies of spin relaxation times,9 along with mea-
surements of depolarized Raman10 and far-infrared and
microwave11 spectra have long been used to find reorienta-
tional correlation functions of the form

CL~ t !5^PL@cosQ~ t !#&, ~1.1!

with Q(t) some angular displacement of the molecule over
the timet andPL(x) theLth order Legendre polynomials~L
being 1 or 2 depending on the particular experiment!. The
experiments invariably found these correlation functions to
be exponentially decaying, indicative of the diffusive char-
acter of the dynamics at the observable time scales. With the
advent of ultrafast fluoresence-anisotropy experiments, how-
ever, it became possible to measure the sameC2(t) at a
much finer time resolution.2,3,12–18 The fact that there was
more to the dynamics than simple diffusion2,3,13,16 and the
realization that even the diffusion reflects a considerable
level of molecular detail2,17–20eventually began to be appre-
ciated.

Contributions have begun to appear, as well, from some
rather different kinds of experiments nicely attuned to the
details of rotational dynamics in liquids. Pulsed terahertz
techniques now allow the rotational spectra of molecules in
liquids to be measured reasonably directly4–6 and optical
Kerr effect ~OKE! methods ~in the form of optically
heterodyne-detected Raman-induced-Kerr-effect, OHD–
RIKES, studies! are starting to go beyond the earliest appli-
cations to neat liquids and being applied specifically to the
dynamics of solutes.21–24 In addition, there has been a par-
ticular interest in the intriguing cases of H2 dissolved in
water25,26 and HCN dissolved in liquid He,27 situations in
which the quantal character of the rotational dynamics merits
special attention.

From the theoretical side, most of what we know about
rotational dynamics in dense liquids starts with the informa-
tion provided by molecular dynamics simulations,28–31
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which, in addition to computing the orientational correlation
function, Eq.~1.1!, typically focus on the angular velocity
autocorrelation function

Cvv~ t !5^vW ~ t !•vW ~0!&/^vW ~0!•vW ~0!&. ~1.2!

The models used to interpret these results, however, span a
rather wide range of conceptual possibilities, tracing the his-
torical evolution of our understanding of liquids. Gordon’s
extended diffusion models,32 though originally couched in
gas-phase terms, were soon shown to be equivalent to an
independent-binary-collision perspective on rotational
behavior.33 Formal kinetic theories were then proposed
building on this same kind of hard-collision viewpoint.34 The
kinetic theories needed significant augmentation to account
for correlated recollisions though, so solvent-cage models,
which stress the librational character of molecular reorienta-
tion, have frequently been suggested as plausible, if not as
microscopically well-defined, alternatives.35–37

Actually, a somewhat broader perspective tends to form
the basis of most of the ongoing discussion of rotational
dynamics. The idea has its roots in the notion of rotational
Brownian motion,38–41 which describes the dynamics
through a rotational Langevin equation in which the sol-
vent’s role is to create arotational friction. Indeed, many of
the current issues in rotational dynamics can be phrased in
terms of the origin and magnitude of such a friction: whether
the friction is, in fact, anomalous around a solute in super-
critical solvents,42–44 whether hydrogen-bonding solvents
lead to a specific solute–solvent complex with comcomitant
effects on the rotational friction,2,45,46 and whether the con-
cept of dielectric friction47–52 ~taking into account, if so de-
sired, realistic molecular charge distributions19,20! provides a
useful picture of the rotation of polar solutes in polar
solvents.2

Of all of these issues, perhaps the most crucial from the
point of view of this paper is the central theme of how mo-
lecular one needs to get in order to understand rotational
friction. Traditionally, hydrodynamic predictions38,53–57have
proven reasonably reliable in accounting for the basic trends
and magnitudes of the rotational friction, especially when
supplemented by corrections for finite solute size58 and for
the free volume between the solute and the solvent
molecules.59 But the deficiencies of such continuum models
are becoming increasingly clear. The observation of nonex-
ponential decays for reorientational correlation functions it-
self emphasizes the need to look at more than the diffusive
motion permitted by simple continuum theories.2,13 More to
the point, the fact that experiments are now considering the
evolution in time from inertial to diffusive behavior3,13,14

moves the discussion beyond the level of any theory which
does not have individual molecules accounting at least for
the dynamics at the shortest times.

A rigorous way to go beyond the hydrodynamic models
while still preserving the basic idea of a rotational friction is
to express the rotational dynamics through a rotational gen-
eralized Langevin equation~GLE!.47,60–65 For a linear or
spherical top molecule, such an equation takes the form

IvẆ ~ t !52E
0

t

dt h~ t2t!vW ~t!1NW ~ t !, ~1.3!

where the functionh(t) generalizes the Langevin equation
~memory-less! friction to a time-dependent version,NW (t) is
the so-called fluctuating torque, andI is the solute moment of
inertia. Physically, we can think of this equation as dividing
the torque felt by a solute into a direct~fluctuating! portion,
the component the solute would feel even if its own motion
had no effect on the solvent, and an indirect~friction! por-
tion, the component caused by the back reaction of the sol-
vent opposing the solute’s motion. The fact that real~mo-
lecular! solvents have to move real distances means that this
back reaction cannot be instantaneous. Hence adding time
dependence to the friction serves to build in the physically
correct time lag between solute angular velocityvW (t) and
the torque at any later timet.

The formal statistical mechanical underpinnings behind
equations such as Eq.~1.3! are well established.66,67The dif-
ficulty is that in order for us to apply Eq.~1.3! we need to
have a fully molecular prescription for both the friction and
the fluctuating torque. It is true that these two ingredients
have to be intimately connected, as evidenced by the second
fluctuation-dissipation theorem

h~ t !5~2kBT!21^NW ~ t !•NW ~0!&, ~1.4!

a result which follows from the formal derivation of the
GLE, as well as from more physical considerations.66,67 But,
the abstract projections involved in partitioning the torque
into its direct and indirect components makes both portions
somewhat unphysical. The time evolution of the fluctuating
torque, for example, can no longer be followed by solving
Newton’s laws using the microscopic forces.

The common solution to this dilemma in problems in-
volving vibrational relaxation68,69 and reaction kinetics70 is
to make the approximation that the fluctuating solvent quan-
tity ~in vibrational relaxation examples, the force on a bond!
can be replaced by the corresponding physical quantity
evaluated with the dynamical variable of interest~the solute
bond length! held fixed. With vibrational examples in par-
ticular, the intrinsic dynamics of the vibration is so much
faster than that of the solvent motion that this approximation
is usually going to be extremely accurate. Indeed, it is pos-
sible to show that this approximation becomes exact in the
limit that the vibrational frequency becomes infinitely
large.68 Much the same approximation has appeared in the
literature for the rotational friction;fixed-orientationfrictions
have been constructed by applying Eq.~1.4! with the actual
torques replacing the fluctuating torques.64,71,72 Here, how-
ever, it is not obvious that there is any such separation of
time scales. If our goal is to understand the molecular basis
of rotational friction, we need to ask why~and even whether!
such an ansatz should work in rotational problems.

In a sense, our work here is based on the purely math-
ematical observation by Zwanzig that a dynamical variable
linearly coupled to a harmonic bath will obey a GLE whose
friction ~and fluctuating force! can be written explicitly in
terms of the bath variables.73,74 This realization has been at
the heart of some of the classic studies of both vibrational
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relaxation75,76 and chemical reaction dynamics,77,78 but, with
a few notable exceptions,79,80 the applications have been
more schematic than physical because of the lack of a mo-
lecular identification of the harmonic modes. What we want
to show in this paper is that by representing the solvent by an
appropriately molecular set of harmonic modes, we too end
up with a GLE describing reorientational motion, but with a
clear molecular interpretation of the terms in the equation.

Consistent with our desire to elucidate molecular mecha-
nisms, the GLE we derive is what we shall call aninstanta-
neousgeneralized Langevin equation. That is, we shall be
looking for the rotational dynamics launched from an arbi-
trary instantaneous liquid configuration, rather than from the
more commonplace, fully averaged, set of initial conditions.
As a result, the harmonic portrait of the solvent that we need
to employ is based on the instantaneous-normal-mode~INM !
representation of solution dynamics.81–83 This same strategy
of using INMs to derive instantaneous GLEs has actually
been used before in conjunction with vibrational
relaxation84–86 and the resulting expressions for the vibra-
tional friction have proven to be a considerable help in un-
derstanding the mechanisms of vibrational relaxation in
liquids.87–89 In this and the following paper,90 we shall en-
deavor to see if we can obtain the same kinds of physical
insights for the more difficult problem of rotational relax-
ation.

The remainder of our presentation will be organized as
follows: In Sec. II we show that one can indeed derive an
instantaneous rotational GLE by using a Zwanzig-type
analysis73 on a short-time version of our Hamiltonian. The
procedure is complicated by the intrinsic nonlinearity of the
relationship between the angles describing the orientation
and the angular velocity, but our desire to focus specifically
on the short-time dynamics turns out to provide enough of a
guide to proceed. We discuss some general features of this
formulation in Sec. III, where we show that our equations do,
in fact, embody the exact dynamics in the liquid at the ear-
liest times and that the two-dimensional~u andf! equations
necessitated by our instantaneous approach to a linear rotor
do reduce, quite properly, to a single equation when we con-
figurationally average. We also point out how the statistics of
the instantaneous fluctuating torques ends up not being
Gaussian, notwithstanding the harmonic character of a liq-
uid’s short-time dynamics. Section IV contains our first nu-
merical results for the rotational friction and for the implied
rotational dynamics. We compare these results to those de-
rived from exact molecular dynamics and we demonstrate
both the accuracy of the fixed-orientation approximation for
the friction and the reasons why our formalism would predict
that it would work so well. We conclude with a few com-
ments in Sec. V, leaving for the companion paper90 the next
step of actually making use of our instantaneous rotational
friction to understand the molecular mechanism of rotation
in liquids.

II. DERIVATION OF THE INSTANTANEOUS
GENERALIZED LANGEVIN EQUATION

The system we shall consider here is a single, linear,
solute molecule dissolved in an atomic solvent. The gener-

alization to molecular solvents is straightforward, but our
simple example probably suffices to reveal the essential is-
sues. The information of interest to us, the orientation of our
solute, is specified in the laboratory frame by the anglesu
and f, so we can represent all of the remaining degrees of
freedom—those of the ‘‘bath’’—byR[(rW0 ,rW1 ,...,rWN), with
rW0 the position vector of the solute’s center of mass and the
remainingrW j ( j 51,...,N) the position vectors of theN solvent
atoms. Within this notation the total Hamiltonian of the sys-
tem can be written

H5
I

2
~ḟ2 sin2 u1 u̇2!1

1

2 (
j 50

N

mjrẆ j
21V~f,u,R!, ~2.1!

whereI is the solute’s moment of inertia, and themj are the
masses of the solute molecule (j 50) and the solvent atoms
( j >1).

The reader may recognize that despite our having
blithely invoked the concept of a bath, there will rarely be a
unique way to partition the total potential energy of the sys-
tem, V(f,u,R), into a bath potential,Vb , and a potential
coupling the bath and orientational degrees of freedom,Vc

V~f,u,R!5Vb~R!1Vc~f,u,R!. ~2.2!

With site–site intermolecular pair potentials, for example,
each pair potential governing the interaction of a solute site
with a solvent atom will contribute to the energies of both
the solute translation and rotation. However once we decide
to focus on the short-time rotational dynamics, it becomes
clear how to proceed. In the following sections, we construct
an approximate Hamiltonian by first defining instantaneous
bath and coupling potentials and then writing the time evo-
lution of each of these in terms of the instantaneous normal
modes of the bath. Straightforward application of the classi-
cal laws of motion then lead to a generalized Langevin equa-
tion for the reorientation of the solute.85

A. The short-time Hamiltonian for the system

We can define an instantaneous bath potential by evalu-
ating the total potential energy with the solute fixed at its
original (t50) orientation

Vb~R!5V~f0 ,u0 ,R!, ~2.3!

a choice which defines the coupling potential by difference

Vc~f,u,R!5V~f,u,R!2V~f0 ,u0 ,R!. ~2.4!

To look at the time evolution governed by these potentials,
we now ask how these potentials change as the system
moves away from its initial configuration (f0 ,u0 ,R0).

For time scales short compared to those required for sig-
nificant rearrangement of the bath, we can imagine expand-
ing the bath potential in powers of the bath-coordinate dis-
placements, truncating the expansion at second order. This
step, of course, defines the instantaneous normal modes of
our bath. Briefly, from the~mass-weighted! dynamical ma-
trix, D(R0), for a given initial configuration of the bath,R0 ,

D j m,kn~R0!5
1

Amjmk

]2V

]r j m]r kn
U

R0

, ~2.5!
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where ther j m denotes themth (m5x,y,z) Cartesian compo-
nent of the position vector of thej th atom, we can construct
a set of independent collective coordinatesqa(t), the INMs,
which provide a molecular description of the subsequent
dynamics.82 If the eigenvector matrix isU(R0), the charac-
teristic frequencies of the modesva are prescribed by the
eigenvalues of the dynamical matrix,

@UT~R0!D~R0!U~R0!#ab5va
2dab , ~2.6!

and the modes themselves are defined by the eigenvectors

qa~ t !5(
j m

U j m,aAmj@r j m~ t !2r j m~0!#. ~2.7!

It is then straightforward to show that the bath-potential en-
ergy,Vb , is given in terms of these modes by

Vb~Rt!'Vb~R0!1(
a

@2 f aqa~ t !1 1
2va

2qa
2~ t !#, ~2.8!

where thef a are the transformed forces,

f a5(
j m

U j m,aF j m , F j m~R0!52
1

Amj

]V

]r j m
U

R0

. ~2.9!

Since the instantaneous normal modes are a natural basis
for dynamics of the bath, the short-time dynamics is revealed
by expanding the coupling in powers of them as well. The
leading term is justVc(f,u,R0), what the coupling would be
for a frozen bath, but each successive term brings in higher
powers of the bath INMs. In much the same way, we can
watch the early evolution of the solute orientation by ex-
panding simultaneously in successive powers of the angle
displacements. Note that, by construction, the coupling term
corresponding to having the bath evolve at fixed solute ori-
entation,Vc(f0 ,u0 ,R), is identically zero, so that the entire
expansion is of what we might call the purelydynamical
portion of the coupling.85

Explicitly then, if we keep just the leading short-time
terms, the coupling potential can be written

Vc~f,u,R!5Vc~f,u,R0!1(
j m

Amj@cf, j m~f~ t !2f0!

3~r j m~ t !2r j m~0!!1cu, j m~u~ t !2u0!

3~r j m~ t !2r j m~0!!#, ~2.10!

where the coupling coefficientscf, j m andcu, j m are

cf, j m5
1

Amj

]2V

]f ]r j m
U

f0 ,u0 ,R0

,

~2.11!

cu, j m5
1

Amj

]2V

]u ]r j m
U

f0 ,u0 ,R0

.

Rewriting this equation in terms of INMs and adding the
result to Eq.~2.8! gives us a short-time expression for the
total potential energy of the system

V~f,u,R!'V~f,u,R0!1(
a

@cf,a~f2f0!

1cu,a~u2u0!#qa1(
a

F2 f aqa1
va

2

2
qa

2 G ,
~2.12!

with cf,a andcu,a the transformed coupling coefficients

cf,a5(
j m

U j m,acf, j m5
]2V

]f ]qa
U

f0 ,u0 ,R0

,

~2.13!
cu,a5(

j m
U j m,acu, j m5

]2V

]u ]qa
U

f0 ,u0,R0

Adding the kinetic energy91 then provides us with our de-
sired short-time formulation for the whole Hamiltonian of
our system,

H5
I

2
~ḟ2 sin2 u1 u̇2!1V~f,u,R0!

1(
a

@cf,a~f2f0!1cu,a~u2u0!#qa

1
1

2 (
a

q̇a
21(

a
F2 f aqa1

va
2

2
qa

2 G . ~2.14!

Because of the instantaneous character of our approach,
this Hamiltonian actually depends on the initial configuration
of the system. Any properly formulated calculation of an
experimental observable based on Eq.~2.14! should there-
fore include an average over the equilibrium distribution of
these configurations. Nonetheless, by being careful to order
terms in powers of displacements from the initial configura-
tion ~rather than say, powers of the coordinates themselves!,
our the total Hamiltonian ends up being divided naturally
into three physically distinguishable terms: asoluteHamil-
tonian in which the bath variables are fixed at initial configu-
ration, R0 , a bath Hamiltonian where the solute orientation
is fixed at initial value (f0 ,u0), and a dynamic coupling
between the solute rotation and the bath INMs. Equation
~2.14! is the starting point for our derivation of a GLE for
solute rotation.

B. Derivation of a rotational generalized Langevin
equation

Our object here is to derive an effective equation of mo-
tion for the solute rotation from the short-time Hamiltonian
constructed in the proceeding section. We begin with the
familiar equation for the classical time evolution of the an-
gular velocity of a linear top. The angular velocity is dictated
by the torque,NW , which in turn is related to the angular
gradient of the total potential,

I v̇g5Ng52
]V

]cg
, ~2.15!

wheredcg is the infinitesimalrotation angle around thegth
laboratory frame axis. Inserting the short-time potential, Eq.
~2.12!, into Eq.~2.15!, gives us an equation of motion for the
angular velocity,
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I v̇g52
]V~f,u,R0!

]cg
2(

a
Fcf,a

]f

]cg
U

t

1cu,a

]u

]cg
U

t
Gqa~ t !, ~2.16!

which also depends on the dynamics of the bath INMs. How-
ever, the time evolution of each INM,q̈a52(]V/]qa), is
simply that of a forced harmonic oscillator, which we can
evaluate, at least formally, as

qa~ t !5q̇a~0!
sinvat

va
1

f a

va
2 ~12cosvat !

2E
0

t

dt
12cos@va~ t2t!#

va
2 @cf,aḟ~t!1cu,au̇~t!#.

~2.17!

With this expression we could derive an effective equa-
tion for the solute orientation simply by substituting the
qa(t)’s into Eq. ~2.16!. Indeed precisely this strategy was
used by Zwanzig in his derivation of a GLE from a general
harmonic bath,73 and by us in our derivation of an instanta-
neous GLE for vibrational relaxation based on INMs.84,85 In
the present case, however, the result would be a complicated
nonlinear equation which would not easily lend itself to writ-
ing in a GLE form. For us to obtain an equation with the
structure of a GLE we shall need some further approxima-
tions, ones actually suggested by our short-time perspective.

We can obtain precisely the rotational GLE we desire by
choosing a special coordinate system for the resolution of
angular velocity and by making a short-time approximation
for the dynamics of the angle displacements. For a given
initial orientation of the solute~Fig. 1!, let us resolve the
angular velocity,vW , along the three mutually perpendicular
axes 1, 2, and 3, where the axis 3 parallels the bond axis of
the linear top, and the axis 1 is in the plane made by the bond
axis and thez axis of the laboratory-fixed frame. That is, for
a given initial orientation we switch to a special laboratory

frame which coincides with the instantaneous body coordi-
nates. By inspection, we see that the infinitesimal rotation
angles around the axes 1 and 2 at that instant,dc1(0) and
dc2(0), arerelated to the differential angles,du0 anddf0 ,
by

dc1~0!52sinu0 df0 , dc2~0!5du0 . ~2.18!

The 3 component of the angular velocity,v3(0), is zero,
since we have taken axis 3 to be along the bond axis of the
linear top. The other components of angular velocity,vg

5dcg /dt, are obtained from Eq.~2.18! as v1(0)5
2ḟ0 sinu0, v2(0)5 u̇0 . The crucial assumption that brings
us a GLE is the idea that, for short times, when the orienta-
tion has not changed all that much from its initial angles, the
infinitesimal twist angles are given at timet by92

dc1~ t !52sinu0df t , dc2~ t !5du t . ~2.19!

The angular velocity then follows as

v1~ t !52ḟ t sinu0 , v2~ t !5 u̇ t , ~2.20!

and the 3 component of the angular velocity is assumed to
remain zero.

The short-time approximations, Eqs.~2.19! and ~2.20!,
together with the solution for the bath INMS, Eq.~2.17!,
allow us to eliminatev3(t) and rewrite Eq.~2.16! as a rota-
tional GLE,

I v̇g5Ng~f,u,R0!2 (
l51

2 E
0

t

hgl~ t2t!•vl~t! dt

1Ng~ t ! ~g51,2!, ~2.21!

with each term on the right-hand side of the equation having
a suggestive physical meaning. Thefrozen-bath torque,
Ng(f,u,R0), defined as

Ng~f,u,R0!52
]V

]cg
U

R0

, ~2.22!

represents the torque the solute would feel if the bath were
frozen at the initial configuration,R0 . The fluctuating
torque, Ng(t),

Ng~ t;f0 ,u0 ,R0 ,Ṙ0!52(
a

cg,aF q̇a~0!
sinvat

va

1
f a

va
2 ~12cosvat !G , ~2.23!

arises from the solvent fluctuations one would see with the
solute orientation fixed at its initial angles,f0 and u0 . Fi-
nally, the self-consistent dynamical interaction between the
bath and the solute appears as a convolution of the angular
velocity and therotational friction matrix, defined as

hgl~ t;f0 ,u0 ,R0!5(
a

cg,acl,a

cosvat21

va
2 , ~2.24!

with the cg,as in Eqs. ~2.23! and ~2.24! the coupling
strengths of each modea,

FIG. 1. Coordinate systems for studying the rotational dynamics of a linear
molecule~portrayed here as a diatomic!. The laboratory frame is indicated
by theX, Y, andZ axes; our choice for an instantaneous frame is defined by
the axes numbered 1, 2, and 3, with the infinitesimal twist anglesdc1 and
dc2 defined as shown.
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cg,a~f0 ,u0 , R0!52
]Ng

]qa
U

f0 ,u0 ,R0

. ~2.25!

Note that as far as the solute orientation goes, Eq.~2.21!
is a properly nonlinear generalized Langevin equation; the
frozen-bath torque contains all the nonlinear dependence on
orientation necessary to give the exact torque on the solute
for a fixed bath configuration,R0 . Consistent with the rest of
our short-time development though, we know that if we de-
sire no more than short-time results we would also be justi-
fied in expanding this torque to low order in the angle dis-
placements~justified, that is, to precisely the same extent that
the linearization of intermolecular forces in the bath to pro-
duce INMs is justified!.85 Consider what happens if we do
so.

Expanding the frozen-bath torque,Ng(f,u,R0), up to
linear terms in the angle displacements yields

Ng~f,u,R0!

'Ng~f0 ,u0 ,R0!1
1

sinu0

]Ng

]f U
f0 ,u0 ,R0

3~sinu0!~f2f0!1
]Ng

]u U
f0 ,u0 ,R0

~u2u0!

'Ng~f0 ,u0 ,R0!1
]Ng

]c1
U

f0 ,u0 ,R0

E
0

t

dt v1~t!

1
]Ng

]c2
U

f0 ,u0 ,R0

E
0

t

dt v2~t!. ~2.26!

With this expansion, which would be exact if we had purely
harmonic libration, we get a linearized GLE,

I v̇g5Ng~f0 ,u0 ,R0!2 (
l51

2 E
0

t

dt@ IVgl
2 1hgl~ t2t!#

3vl~t!1Ng~ t !, ~2.27!

where theinstantaneous librational frequencymatrix, Vgl ,
is defined as

Vgl
2 5

1

I

]2V

]cg ]cl
U

R0f0 ,u0

. ~2.28!

Parenthetically, were we to turn off both the friction and
fluctuating torque in the GLE, freezing the dynamics of the
solvent completely, Eq.~2.27! would portray the rotation of
the solute within each separate static solvent configuration as
a libration:

v̈g1 (
l51

2

Vgl
2 vl50.

More generally, what a GLE gives under such circumstance
is the purely inhomogeneous contribution of the solvent to
the dynamics of the solute. Our instantaneous perspective
therefore identifies our friction~and our fluctuating torque!
as the source of rotational dephasing for each liquid configu-
ration.

The instantaneous linearized rotational generalized
Langevin equation, Eq.~2.27!, along with the microscopic
definitions of the rotational friction, Eq.~2.24!, and the fluc-
tuating torque Eq.~2.23!, constitute the primary results of
this paper. Using the explicit representation of the bath dy-
namics provided by INMs, we have reduced the calculation
of the short-time reorientational dynamics of a solute to a
single integro-differential equation for each configuration,
one relying on nothing but the equilibrium properties of that
configuration. However, we still need to establish in what
sense this result is really correct for short times—and just
how we can make use of the equation in practice. To do so
we need to investigate a number of the special features of our
instantaneous GLE.

III. CHARACTERISTIC FEATURES OF THE
INSTANTANEOUS GLE

A. Some useful symmetries

In formulating our dynamics we were careful to choose a
set of laboratory coordinates coinciding with those of the
solute’s time-zero body-fixed frame. Because of this special
choice, and because of the linear geometry of our rotor, we
can derive a number of symmetry properties that greatly sim-
plify the further analysis of our GLE. These symmetries will
not only help us investigate the exact short-time behavior of
the angular velocity time correlation function generated from
our GLE, but they will also allow us to study the
configuration-averaged rotational-friction and instantaneous-
librational-frequency matrices. The symmetry arguments
will also be helpful in the looking at the distribution of fluc-
tuating torques.

Consider the symmetry operation of ap/2 rotation of the
linear top around axis 3~Fig. 2!. Under this operation, the
infinitesimal twist angles change as

dc1→2dc2 , dc2→dc1 , ~3.1!

but the Hamiltonian and the configuration of the system re-
main unchanged. The transformations of the torque,Ng5
2(]V/]cg), and the angular velocity,vg5dcg /dt, follow
directly as

N1→2N2 , N2→N1 , v1→2v2 , v2→v1 . ~3.2!

Using the fact that any ensemble average we compute
should be invariant to these transforms,93 one can prove that

FIG. 2. A useful symmetry operation: rotation of the linear molecule byp/2
around axis 3. Under this operation, the total Hamiltonian and the configu-
ration of the system are unchanged, but the infinitesimal twist angles around
the axes 1 and 2 vary as shown in Eq.~3.1!.
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^N1~0!2&5^N2~0!2&5 1
2^NW ~0!2&,

~3.3!
^v1~0!2&5^v2~0!2&5 1

2^vW ~0!2&,

and that the corresponding cross terms, such as
^N1(0)N2(0)&, are zero. Thus we have the general principle
that axes 1 and 2 must be statistically equivalent.

What happens under this same transformation to the key
quantities in the instantaneous GLE, the coupling constants,
cg,a , the friction matrix, hgl(t), the instantaneous-
librational-frequency matrix,Vgl , and the fluctuating
torques,Ng(t), is described in Table I. From the table, we
see that the average diagonal elements of the friction and
librational-frequency matrices are also identical,

^h11~ t !&5^h22~ t !&, ^V11
2 &5^V22

2 &, ~3.4!

and the off-diagonal elements such as^h12(t)& and^V12
2 & are

zero. We see that the mean fluctuating torque must vanish as
well.

^N1~ t !&5^N2~ t !&50. ~3.5!

In an average sense, then, our instantaneous rotational gen-
eralized Langevin equation looks much the same as the tra-
ditional, diagonal, GLE given in Eq.~1.3!. Similar symmetry
arguments based onp rotations about the laboratory axes can
be used to show how the more conventional GLE~derived
formally via projection operator techniques! can always be
reduced to a diagonal form for linear and spherical top
rotors.94

B. Comparison with the exact short-time behavior

Though we hope the development here will be appropri-
ate for 100’s of fs rather than 10’s of fs, it is important that
we know how the formalism behaves at the latter, ultrashort,
time scales—time short enough that a low-order power series
in t suffices. We therefore need to compare the leading terms
in the expansion of an exact correlation function with those
predicted by our instantaneous GLE.85 The exact short-time
expansion of the angular velocity time correlation function,
Cvv(t), for a linear top is, for example, well known,95

Cvv~ t !512
t2

2

^NW ~0!2&
2IkBT

1
t4

4!

^NẆ ~0!2&
2IkBT

1¯ . ~3.6!

To evaluate this same time correlation function from our
GLE, we first obtain expressions for the initial time deriva-
tives of the angular velocity,v̇g(0),v̈g(0),... from the
INM–GLE, Eq. ~2.27!, and its successive time derivatives.
After expanding Eq.~1.2! in a powers series int, a little
algebra then yields the equivalent INM–GLE correlation
function,Cvv

INM(t),

Cvv
INM~ t !512

t2

2
^V11

2 &1
t4

4! F (l51

2

^V1l
4 &

1
1

I K (
a

c1,a
2 L G1¯ . ~3.7!

But, if we evaluate thef integration in the mean-squared-
instantaneous-librational frequency, ^V11

2 &5(1/I )
3^csc2 u (]2V/]f2)&, by integration by parts82 we find

^V11
2 &5

1

IkBT K S cscu
]V

]f D 2L 5
1

IkBT K S ]V

]c1
D 2L

5
^NW ~0!2&
2IkBT

, ~3.8!

where the symmetry property, Eq.~3.3!, is used to derive the
last identity. Therefore we see that thet2 coefficient of
Cvv

INM(t) is exact.
What about thet4 coefficient? We note

Ṅ1~0!5(
j m

]N1

]r j m
ṙ j m~0!1 (

l51

2
]N1

]cl
vl~0!

5(
j m

]N1

]r j m
ṙ j m~0!1 (

l51

2

IV1l
2 vl~0!, ~3.9!

enabling us to write thet4 coefficient from the exact MD as96

^NẆ ~0!2&
2IkBT

5K (
l51

2

V1l
4 L 1

1

I (
j m

K 1

mj
S ]N1

]r j m
D 2L . ~3.10!

This equation matches the corresponding coefficient from
INM–GLE, except for the second term on the right-hand
side. But if we notice the identity,

K (
a

c1,a
2 L 5K (

a
S ]N1

]qa
D 2L

5K (
a

S (
j m

U j m,a

1

Amj

]N1

]r j m
D 2L

5K (
j m

1

mj
S ]N1

]r j m
D 2L , ~3.11!

arising from the orthogonality of theU eigenvector matrix,
we see that thet4 coefficient ofCvv

INM(t) is also exact. Thus,
despite the approximations used in deriving it, the INM–
GLE is guaranteed to produce the exact short time behavior
for the angular velocity time correlation function through
order t4. Higher orders are, of course, also included, but not
with the same quantitative accuracy.

TABLE I. Transformations of various quantities under the symmetry operation which rotates a linear molecule
by p/2 around axis 3.

From c1,a c2,a h11(t) h22(t) h12(t) V11
2 V22

2 V12
2 N1(t) N2(t)

To 2c2,a c1,a h22(t) h11(t) 2h12(t) V22
2 V11

2 2V12
2 2N2(t) N1(t)

7530 J. Chem. Phys., Vol. 112, No. 17, 1 May 2000 J. Jang and R. M. Stratt



C. Distribution of the fluctuating torque

The fact that our fluctuating torque is defined by a fully
molecular expression instead of by just the typical set of
statistical properties one normally sees with a GLE means
that we cannot take these statistical properties for granted.
Indeed, the ability of the instantaneous approach to incorpo-
rate realistic non-Gaussian features of the statistics69,85 is
part of its power. We therefore conclude this section by de-
riving some formal properties of our fluctuating torque from
our instantaneous GLE and by studying its statistical distri-
bution within a specific numerical example.

We first note that, consistent with standard usage, our
fluctuating torque,NW (t), is uncorrelated with the initial an-
gular velocity,vW (0):

^vW ~0!•NW ~ t !&50, ~3.12!

sinceNW (t) is a function of configuration only. Moreover, as
with the usual expectations, we can show that the fluctuating
torque autocorrelation function is related to the rotational
friction. Note, however, that our instantaneous friction and
fluctuating torque are defined so as to vanish at time zero,
meaning that their strict analogues in conventional GLE for-
malisms would be the displacements,h(t)2h(0) andNW (t)
2NW (0). As discussed in the previous work,85 this choice is
not unique, but it suits the short time nature of our approach.
At time zero, the torque on the solute is given by the exact
instantaneous torque,NW (u0 ,f0 ,R0), but the fluctuating
torque and the friction grow in as the system evolves, bring-
ing in the dynamics of the interaction between the solute and
the bath—bringing in, in particular, the torque on the solute
caused by the bath’s own dynamics and the ‘‘reaction-field’’
torque generated by the bath’s response to the solute rota-
tion, respectively. With this feature in mind, we can under-
stand why Eqs.~2.23! and~2.24! tell us that the INM version
of the second fluctuation-dissipation theorem is

d2

dt2
^hgg~ t !&52

1

kBT
^Ṅg~ t !Ṅg~0!& ~3.13!

~where we have used the equipartition of the initial INM
velocities,̂ q̇a(0)q̇b(0)&5kBTdab , and the fact that the off-
diagonal elements of the friction matrix vanish by symme-
try!, rather than the usual, twice-integrated, version of the
same equation.

We turn, finally, to the distribution of the fluctuating
torque itself,D(N),

D~N!5^d@N2Ng~ t;f0 ,u0 ,R0 ,Ṙ0!#&. ~3.14!

~In this and all the remaining equations in this section, the
subscriptg is meant to denote either of the two axes 1 and 2
shown in Fig. 1; the final answers are invariant to the
choice.! In contrast to the friction and librational frequency,
which rely solely on the initial configuration, our fluctuating
torque has an additional dependence on the initial velocities
of the bath,Ṙ0 . This dependence is easily integrated analyti-
cally though, and as we might have expected, when we per-
form the velocity average indicated in Eq.~3.14! we do find
a Gaussian distribution. The nontrivial feature is that the

Gaussian is different for each liquid configuration; our final
result is actually a configurational average of Gaussians

D~N!5K 1

A2psg
2~ t !

expF2
~N2N̄g~ t !!2

2sg~ t !2 G L , ~3.15!

with time-and configuration-dependent means,

N̄g~ t !52(
a

cg,a f a

va
2 ~12cosvat !, ~3.16!

and variances,

sg
2~ t !5kBT(

a
S cg,a

va
sinvat D 2

. ~3.17!

Our distribution of fluctuating torques, therefore will not, in
general, be Gaussian despite the harmonic character of our
formalism.85

The defining property of a Gaussian distribution is, of
course, that all the cumulants higher than the second order
disappear. To see just what our distribution looks like, we
compare the full distribution, Eq.~3.15!, to the outcome from
a second-order cumulant expansion. The first cumulant,
^Ng(t)&, is zero by symmetry~Sec. III A!, and the second
cumulant is given by

C25^sg~ t !2&1K F(
a

cg,a f a

va
2 ~cosvat21!G2L . ~3.18!

In Fig. 3 we plot the distribution of the fluctuating torque
and the Gaussian approximation for it for a homonuclear
diatomic in an atomic solvent. As the time increases, the
rather sharp distribution seen at the shortest time~21.6 fs!
appears to stretch out to a nearly uniform distribution at the
longest time~2.16 ps!.@The distribution actually broadens
without a limit for an infinite time, because the variance for
each configuration, Eq.~3.17!, diverges, a consequence of
the short-time character of our theory.97# The interesting
point for us, though, is that the Gaussian distribution is found
to be noticeably broader than the exact distribution at the
shortest times, but the differences seem to become less pro-
nounced at the two longer times displayed.98

IV. THE AVERAGE ROTATIONAL FRICTION

A. The rotational friction spectrum

The most physically revealing quantity arising out of our
generalized Langevin formalism is the instantaneous rota-
tional friction, Eq.~2.24!; it is what sets the time scales and
mechanisms for rotational relaxation. However, as we shall
see presently, most of the physical content of the instanta-
neous friction is embodied in its configurational average. We
will therefore focus on this average for the remainder of this
paper.

As we have written it, the instantaneous rotational fric-
tion is given as a 232 matrix. When averaged over the
configurations, though, the friction matrix becomes diagonal
by symmetry, with the diagonal elements of the matrix iden-
tical to one another. Thus the average friction reduces to a
purely one-dimensional quantity~meaning that we can drop
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the subscripts in our subsequent use!. The diagonal element
of the average matrix,h INM(t)(5^h11(t)&5^h22(t)&), can
be written as

h INM~ t !5K (
a

~ca!2
cosvat21

va
2 L , ~4.1!

whereca5(]N/]qa) andN is the torque along an axis per-
pendicular to the axis of the linear top.

It is useful, as in other INM treatments of solute
relaxation,87 to introduce therotational friction spectrum,
r fric(v),

r fric~v!5K (
a

~ca!2d~v2va!L , ~4.2!

which lets us write the average friction,h INM(t), and its
Fourier transform,h̃ INM(v), as

h INM~ t !5E dv r fric~v!
cosvt21

v2 ~4.3!

and

h̃ INM~v!5E
0

`

dt cosvth~ t !5
p

2

r fric~v!

v2 , vÞ0.

~4.4!

The physical interpretation of the rotational friction spectrum
is compelling: each mode with frequencyva contributes to
the spectrum to an extent determined by its coupling
strength,ca

2, and the final spectrum is simply the configura-
tionally averaged sum of the contribution of each mode. The
rotational friction spectrum is thus aninfluence spectrumof a
kind familiar to us through the INM studies of solvation and
vibrational relaxation.87,88,99,100Its natural counterpart, and a
useful comparison is the liquid’sdensity of states, D(v),

D~v!5K ~3N13!21(
a

d~v2va!L , ~4.5!

which has a constant weighting for every mode.
In Fig. 4 we show a typical rotational friction spectrum,

one for a homonuclear diatomic dissolved in a dense super-
critical fluid of argon. Despite the relatively low probability
of seeing high-frequency modes~as evidenced by the density
of states!, high-frequency modes make a significant contri-
bution to the rotational friction spectrum. The peak fre-
quency ofr fric(v) occurs at the relatively high frequency of
136 cm21, and the area under the imaginary branch, which
amounts to 18.2% of the total area of the density of states, is
almost negligible~less than 1% of the total area! in the rota-
tional friction spectrum. This same kind of shift to a higher
frequency compared to the density of states and this same
near irrelevance of the imaginary branch have also been
found in the vibrational friction and solvation spectra.88,100

FIG. 3. Distribution of the fluctuating torque calculated from our instanta-
neous GLE for a homonuclear diatomic dissolved in an atomic fluid. For
comparison we also plot the Gaussian distributions with zero mean and the
same variances as those predicted by our GLE. In this and all succeeding
figures, the solvent is Lennard-Jonesium under dense, supercritical condi-
tions ~reduced temperaturekBT/e52.50 and reduced densityrs351.05,
with e ands being the Lennard-Jones well depth and diameter, respectively!
and the diatomic is modeled as two Lennard-Jones atoms, identical in mass
and Lennard-Jones parameters with those of the solvent. For this example,
the atoms in the diatomic are separated by a rigid bond lengthd51.25s.
The three different panels correspond to the distribution evaluated at three
different times, 21.6 fs, 216 fs, and 2.16 ps, averaging each over 40 000
configurations. The numerical values shown are those for an Ar solvent~e
5119.8 K ands53.405 Å!, for which the natural time scaletLJ52.16 ps.

FIG. 4. The average rotational friction spectrumr fric(v) ~top! and three
representative instantaneous~single-configuration! friction spectra~bottom!
for a homonuclear diatomic dissolved in a dense supercritical argon fluid.
The model and thermodynamic conditions are as reported in Fig. 3, with
configurational averaging carried out over 40 000 configurations. In the top
panel, we also plot the solvent instantaneous-normal-mode density of states,
D(v), normalized so as to have the same area as the friction spectrum. The
bottom three panels all have the same vertical scale as one another, 3.75
times that of the top panel, and include the average rotational friction spec-
trum for comparison.
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For comparison purposes, we illustrate at the bottom of the
figure the friction spectra for several individual configura-
tions. In contrast to the averaged spectrum, these spectra
consist of well resolved peaks whose locations vary tremen-
dously from configuration to configuration, making clear the
role of the strong inhomogeneity in broadening the single-
configuration spectra.87,88

Once we evaluate the rotational friction spectrum, the
time-and frequency-domain friction kernels can be calcu-
lated by using Eqs.~4.3! and~4.4!. In Fig. 5 we compare the
time-domain friction kernel fromr fric(v) to the results from
exact molecular dynamics~and to the results from the fixed-
orientation molecular-dynamics calculations that will be dis-
cussed in Sec. VI B! for a homonuclear diatomic dissolved in
an atomic solvent.~For this, and all of our subsequent calcu-
lations, we shall omit any contributions there might be from
the imaginary modes.! We first notice that most of the essen-
tial dynamics of the exact friction occurs within 200 fs, il-
lustrating short-time character of rotational friction. The
INM friction precisely duplicates the abrupt falloff of the
exact friction for short times, although it decays too quickly
after 100 fs, and slowly diverges to negative infinity at
longer times.85 In the frequency domain,~Fig. 6!, the INM
frictions are much more appealing, nicely reproducing the
basic frequency range and much of the qualitative behavior.
They do slightly overestimate the exact frictions at interme-
diate frequencies~up to 175 cm21! and die too quickly be-
yond that frequency~Fig. 6!. Moreover, at zero frequency,
the INM frictions are qualitatively incorrect, with av21 di-
vergence setting in as the frequency approaches zero.101

Nonetheless, the INM frictions are in reasonable agreement
with the exact results for all but the lowest frequencies. In
particular, the INM theory, being a molecular theory, suc-
cessfully captures the two-orders-of-magnitude change in
friction created by varying the bond length of the diatomic.

B. The exact friction and the friction at fixed
orientation

In order to obtain the last two figures, we computed the
exact rotational friction,h(t), from a molecular dynamics

simulation by a numerical method similar in spirit to Berne
and Harp’s95 approach to calculating friction. Explicitly: dif-
ferentiating Eq.~1.3! gives us a self-consistent equation for
h(t),

h~ t !52IC̈vv~ t !2E
0

t

dt h~t!Ċvv~ t2t!. ~4.6!

To calculate the time derivatives ofCvv(t) needed in Eq.
~4.6!, we fit Cvv(t) from the molecular dynamics with a
sixth order polynomial int and analytically differentiated the
resulting functional form.102,103 With Ċvv(t) and C̈vv(t)
thus obtained, the friction kernel is calculated by propagating
a discretized form of Eq.~4.6!,

h~ tn!52IC̈vv~ tn!2dt (
k50

n21

Wkh~ tk!Ċvv~ tn2tk!, ~4.7!

where Simpson’s rule is used for the integral weightings,
Wk .

This method of computing the exact friction is not only
an indirect, numerically involved procedure, it makes the
microscopic interpretation of the friction difficult. A much
more physical and numerically practical approximation
would result if we were allowed to use the second
fluctuation-dissipation theorem@Eq. ~1.4!# to compute the
friction, but with the fluctuating torque replaced by the real
torque of a hypothetical reference system in which the ori-
entation of the solute was held fixed. As we noted in the

FIG. 5. The time-domain rotational friction for a homonuclear diatomic
dissolved in a dense supercritical argon fluid. The model and thermody-
namic conditions are as reported in Fig. 3. Plotted here are the friction
kernels extracted from exact molecular dynamics simulations, both by rig-
orous inversion~solid line! and by using the fixed-orientation approximation
~short-dashed line!, as well as those predicted by the instantaneous-normal-
mode theory~long-dashed line!.

FIG. 6. The frequency-domain rotational friction for a homonuclear di-
atomic dissolved in a dense supercritical argon fluid. The model and ther-
modynamic conditions are as reported in Fig. 3, except that here we con-
sider diatomics with three different bond lengths (d
51.25s,0.65s,0.325s). Note the significant differences in the magnitudes
of the friction for the three examples. As in Fig. 5, the results from both
exact ~solid! and fixed-orientation~short dashed! molecular dynamics are
compared with those from INM theory~long dashed!.
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Introduction, the analogous calculation of arigid bond fric-
tion is, in fact, commonplace in studies of vibrational relax-
ation. There however, the justification involves a presumed
separation of time scales between the tagged~vibrating! de-
gree of freedom and the surroundings.68 Lacking any such
separation for rotation, we need to examine whether this kind
of approximation really provides a sensible alternative.

To produce the rotational version of the rigid-bond fric-
tion we evaluate the torque autocorrelation function holding
the solute fixed at its initial orientation,f0 andu0 , giving us
the instantaneous fixed-orientation friction, hfixed(t),

hfixed~ t !5
1

2kBT
^NW ~ t !•NW ~0!&f0 ,u0

, ~4.8!

where ^ &X0
means the average withX fixed at the initial

valueX0 and the torque is the real torque on the orientation-
ally frozen solute. Clearly, fixed orientation friction kernels
calculated from molecular dynamics~Figs. 5 and 6! do an
exceptional job in replicating the exact results over the entire
range of time and frequency: with the exception of frequen-
cies less than 25 cm21 or so, they are hardly distinguishable
from the exact frictions.

Despite this quantitative success, we are left with the
question of why the fixed-orientation frictionshouldwork as
well as it does for rigid rotors in liquids. Unlike the situation
with vibrational relaxation, the characteristic frequencies for
rotation are rather low. In the gas-phase rotation is a zero-
frequency excitation, and even in a liquid the librational fre-
quencies (Vgg/2pc) tend to be well under 100 cm21 for all
of the Ar solvent examples.90 Within INM formalism,
though, we can prove that this fixed orientation friction is
identical ~within a constant offset! to the average friction
obtained from our instantaneous GLE: The torque on the
nonrotating solute can be expanded to linear order in INMs,

Ng~ t !'Ng~0!1(
a

]Ng

]qa
qa ~g51,2!, ~4.9!

where we have chosen the special coordinates as before.
Since the orientational variables of the solute are held fixed,
the time evolution ofqa is given by Eq.~2.17! minus the
convolution term

qa~ t !5q̇a~0!
sinvat

va
1

f a

va
2 ~12cosvat !, ~4.10!

so that

^Ṅg~ t !Ṅg~0!&f0 ,u0
5K (

a
S ]Ng

]qa
D 2

cosvatL
f0 ,u0

. ~4.11!

Integrating Eq.~4.11! twice with respect to time,104 gives us
an expression for the fixed orientation friction within INM
theory,hfixed

INM(t),

hfixed
INM ~ t !5

1

kBT
^Ng~0!2&f0 ,u0

1K (
a

S ]Ng

]qa
D 2 cosvat21

va
2 L

f0 ,u0

. ~4.12!

However, using symmetry properties we can drop the sub-
script,g in Eq. ~4.12!, leaving

hfixed
INM ~ t !5

1

2kBT
^NW ~0!2&f0 ,u0

1E
0

`

dv rfixed~v!
cosvt21

v2 ,

~4.13!

where the fixed-orientation friction spectrum,rfixed(v), is
defined as

rfixed~v!5K (
a

~ca!2d~v2va!L
f0 ,u0

. ~4.14!

Furthermore, we can remove the constraint of fixed orienta-
tion in the averages of Eqs.~4.13! and ~4.14!, because the
configuration spaces sampled are identical whether or not the
orientation is fixed. Thus the fixed orientation friction within
INM theory can be written as

hfixed
INM ~ t !5

1

2kBT
^NW ~0!2&1h INM~ t !, ~4.15!

which, aside from the constant offset, is equal to the average
friction, h INM(t), from the instantaneous rotational GLE.
From the instantaneous perspective, then, configurationally
averaging the friction is precisely equivalent to evaluating it
by freezing the tagged solute degree of freedom.85,105

C. Homogeneous dynamics from the average friction

Given the simplifications afforded by configurationally
averaging, it is worth asking ourselves whether the average
of our instantaneous friction might very well suffice as an
ingredient in our instantaneous GLE. Certainly, in principle,
one need not make any such approximation. One could, for
example, solve our instantaneous GLE, Eq.~2.27!, for each
liquid configuration to obtain the angular-velocity autocorre-
lation function, Cvv(t). Multiplying Eq. ~2.27! by vl(0)
and taking the average over the initial angular velocities
gives us a matrix equation for the correlation matrix,
^vg(t)vl(0)&, for a given initial configuration. By then
solving for the correlation matrix for each configuration and
taking the average of the results over configurations, we
would get the desired, fully averaged, angular-velocity auto-
correlation function. But instead of pursuing this compli-
cated strategy, consider the much simpler route of replacing
both the instantaneous friction and the instantaneous-square
librational frequency in our GLE by their configurational av-
erages:

I v̇g~ t !52E
0

t

dt@ I V̄21h INM~ t2t!#vg~t!1Ng~ t !,

~4.16!

where V̄ is the rms value of the diagonal element of the
instantaneous-librational frequency

V̄25^V11
2 &5^V22

2 &. ~4.17!

This same approach has been found to be virtually exact
in the INM study of vibrational relaxation.85 Physically, it
seems sensible that this preaveraging corresponds to the lim-
iting case in which the solvent fluctuates rapidly compared
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with the rotational relaxation of the solute, just as in Brown-
ian motion of a heavy particle in a light solvent. The solute
then sees the friction and instantaneous-librational frequency
effectively averaged over these solvent fluctuations. To the
extent to which this picture is correct, we need to think of the
solute dynamics as falling into thehomogeneouslimit as
opposed to a purely static solvent~inhomogeneous! limit,
where, as discussed in Sec. II B, the solute rotates in a fixed
solvent cage.

This homogeneous dynamics of the angular-velocity au-
tocorrelation function,Cvv(t), is governed by the integrod-
ifferential equation,

Ċvv~ t !52E
0

t

dt@V̄21~1/I !h INM~ t2t!#Cvv~t!. ~4.18!

This equation is actually formally identical to the dynamics
of the bond-velocity correlation of an oscillator with renor-
malized frequencyV̄ and reduced massI seen in GLE stud-
ies of vibrational relaxation.86 Using the INM friction and
the rms-librational frequency, we solved Eq.~4.18! numeri-
cally using the method of Berne and Harp.95 In Fig. 7, we
show the results: time correlation functions from the INM-,
exact-MD, and fixed-orientation-MD friction kernels plotted
for a homonuclear diatomic in dense supercritical argon.
Note the relatively fast decay of the angular velocity corre-
lation functions, especially for the two longer bond lengths
displayed. The correlation functions from the INM–GLE
precisely reproduce the exact correlation functions for times
up to about 120 fs. They also mimic the overall features of

the exact results—the minima for the longer two bond
lengths and the relatively slow and monotonic decay for the
shortest bond length displayed. Betrayed by their fundamen-
tally short-time character however, the INM correlation func-
tions begin to deviate from the exact MD results after around
150 fs and fail to decay to zero at longer times.

V. CONCLUDING REMARKS

Our focus here has been on the influence of a liquid
environment on how a linear solute reorients at short times.
As in vibrational relaxation, the notion that we can describe
much of the dynamics of the surrounding solvent by instan-
taneous normal modes lets us represent the complicated
solute–solvent dynamical coupling with an instantaneous
generalized Langevin equation for the solute coordinates of
interest. More to the point, we are able to produce genuinely
microscopic definitions for the rotational friction and the
fluctuating torque. Our development of a GLE formalism has
not been straightforward as it was with vibrational relax-
ation, both because of the need to represent the special ge-
ometry of rotational dynamics and because of the differences
in how a solvent interacts with rotational degrees of freedom.
Nonetheless, we find the resulting rotational friction and the
consequent relaxation of the angular velocity to be similar to
the vibrational friction and relaxation of the vibrational-
mode velocity. More profound aspects of this similarity will
be discussed in the companion paper.90

The instantaneous rotational friction we calculate does
seem to be reasonably accurate over a wide range of frequen-
cies but, as with its vibrational counterpart, it has difficulty
in reproducing the correct behavior at both very high and
very low frequencies. Indeed, the low-frequency divergence
of our friction seems to be a fundamental consequence of the
short-time assumptions of the theory. However, our recent
experiences with high-frequency vibrational relaxation sug-
gest that the high-frequency deficiency can probably be rem-
edied fairly easily within an instantaneous theory.106 If the
analogies hold, the physical events leading to the highest-
frequency response are largely going to be rare but violent
few-body interactions. As a result, the high frequencies are
going to correspond to even shorter time scales than those
that dominate the center of the solvent band, but with ampli-
tudes for the relevant potentials, forces, and torques which
are significantly larger. The bilinear~one-phonon! coupling
assumed in Eq.~2.14! is therefore going to be strongly sus-
pect; higher-order, multiphonon, couplings will undoubtedly
be needed.

We do note that the use of bilinear couping was critical
to our derivation of the instantaneous rotational GLE, so
much so that it is unclear how to go beyond this weak cou-
pling assumption without losing the GLE structure. We can,
however, include nonlinear couplings within the fixed-
orientation approximation~which we have found to be virtu-
ally quantitative!. To do so we observe that the torque per-
pendicular to the bond axis of the linear top,N, can be
expanded to any desired order in the INMs,

FIG. 7. Normalized angular-velocity autocorrelation functions for a homo-
nuclear diatomic dissolved in a supercritical argon fluid. The models and
thermodynamic conditions are as reported in Fig. 6. The correlation func-
tions are calculated by using friction kernels derived from exact~solid! and
fixed-orientation~short dashed! molecular dynamics, and from INM theory
~long dashed!. Imaginary mode contributions have been removed from the
INM results in the standard fashion.
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N~ t !5N~0!1(
a

]N

]qa
qa1

1

2 (
ab

]2N

]qa]qb
qaqb1¯ .

~5.1!

Keeping only the linear term in the expansion yields a fric-
tion identical to that derived from the instantaneous GLE,
but there is nothing preventing us from keeping higher order
terms, or even summing the series to infinite order. Doing so
will still leave out the anharmonicity in the bath dynamics,
but it will correctly preserve the nonlinear dependence of the
torque on the bath variables. This kind of approach actually
ended up being quite accurate in our vibrational relaxation
studies, where we accomplished the infinite-order resumma-
tion by treating the coupling as being instantaneously
exponential.106

From a somewhat broader perspective, though, we really
care less about having an exact numerical result for the ro-
tational friction than about having some insight into the mo-
lecular mechanisms that underly rotational relaxation. With
the realization that the fixed-orientation approximation pro-
vides a facile route to extracting rotational friction from con-
ventional molecular dynamics simulations, there is, after all,
little reason to choose an INM approach just to provide nu-
merical values for the friction. The real advantage, as in the
parallel studies of solvation and vibrational relaxation, lies in
the prospects for analyzing specific molecular contributions
to the friction. We are therefore ready to take up our basic
physical question of which solvents, moving in which direc-
tions, most efficiently foster rotational relaxation. We will
address this issue for a representative system in the following
paper.90
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