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Introduction

Water soluble macrocyclic molecules are most attractive 
molecules to study host–guest interactions both in solution 
and solid state [1, 2]. Water soluble calixarenes have exten-
sive applications like drug delivery, molecular recognition, 
and crystal engineering [3–9]. The sulfonation of tert-butyl-
calix[4]arene on para position renders highly water-soluble 
p-sulfonatocalix[4]arene (p-SC4) [10]. The cone shaped 
structure of p-SC4 is stabilized by intramolecular hydro-
gen bonding at the lower rim [11]. The p-SC4 have hydro-
phobic (aromatic rings) cavity and hydrophilic (sulphonato 
and hydroxyl groups) rims [12]. The uniqueness of p-SC4 
is the flexible cavity structure due to the phenolic rings 
interconnected by means of methylene bridge, compared to 
other water soluble host molecules like cyclodextrins and 
cucurbiturils [13]. This uniqueness makes p-SC4 efficient 
to encapsulate simple organic molecules [14–16], ionic 
compounds [17], biologically important macromolecules, 
peptides and proteins [18]. There are numerous reports on 
the host–guest chemistry of p-SC4 with drug molecules [19, 
20] like lomefloxacin [21], 9-amino-acridine [22], vitamin 
K3 [23], Norfloxacin [24]. Kahwajy et al. studied binding of 
the anticancer drug (phenanthriplatin) with cucurbit[n]urils, 
β-cyclodextrin and p-SC4. They reported that the p-SC4 was 
the efficient drug delivery vehicle among the other macro-
cycle molecules [12].

The n-(4-hydroxylphenyl) imidazole (NHIP) contains two 
functional aromatic moieties (phenolic and imidazole group) 
(Fig. 1). The encapsulation of one particular functional 
group is one of the strategy to explore the functionalities of 
the other group while both groups are present in the same 
molecule [25]. The imidazole group is having very impor-
tant role in biology [26, 27]. Imidazole is one of the active 
centers of proteins, it can cleave DNA efficiently in the 
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physiological environment [28, 29]. Feng et al. studied the 
interaction between cucurbit[n]urils (n = 6,7,8) with some 
imidazole derivatives and reported in presence of cucurbit[n]
urils the phenyl group of NHIP inside the cavity of and imi-
dazole group outside of the cavity [26]. Huo et al. reported 
the NHIP containing complex with cucurbit [6]uril and stud-
ied DNA cleavage in physiological environment [30]. In this 
present work, the host–guest interaction between NHIP with 
p-SC4 in an aqueous medium, using emission, excited life-
time, electrochemical methods are studied. Density func-
tional theory (DFT) based theoretical simulations employed 
to investigate the interaction energies and orientations of 
NHIP with p-SC4. The DFT simulations revealed the charge 
transfer phenomenon upon complexation.

Experimental Section

Materials

N-(4-hydroxylphenyl) imidazole and t-butylcalix[4]arene 
are procured from Sigma–Aldrich. Hydrochloric acid is pur-
chased from Fisher Scientific. Ultra-pure water (Millipore) 
and ethanol are used as solvent throughout the study. p-SC4 
is synthesized according to the reported procedure [31]. The 
NHIP, as such, is not soluble in water, therefore, NHIP is 
converted to hydrochloride salt using literature procedure 
[26].

Instruments

The emission measurements are performed by using JASCO 
FP-8200 Spectrofluorometer at room temperature. The 
excited state fluorescence lifetime is measured using time 
correlated single photon counting method (TCSPC) in HOR-
IBA JOBIN-VYON data station. The electrochemical stud-
ies are carried out using Auto lab electrochemical analyzer 
(GPES software). A classical three electrode cell assem-
bly is used for the electrochemical measurements. Cyclic 

Voltammetry measurements are carried out using glassy 
carbon electrode with diameter 3 mm as working electrode 
at applied potential from − 1.3 to 1.2 V for each sample with 
single cycle. The reference electrode is saturated calomel 
electrode (SCE) and the platinum electrode is the counter 
electrode. All experiments are carried out at 30 ± 1 °C. The 
working electrode is polished well to a mirror with 0.05 μm 
alumina aqueous slurry, and washed with double distilled 
water before performing each experiment. The FT-IR spectra 
are recorded on Jasco FTIR 4600 spectrometer using KBr 
pallets in the range of 4000 − 400 cm− 1.

Fluorescence Spectral Titration

The stock solution of 1.03 × 10 − 3 M is prepared in 25 ml 
SMF. The concentration of NHIP is fixed at 1 × 10− 5 M, 
and the concentration of p-SC4s, is varied from 1 × 10− 5 
M to 5 × 10− 5 M and the fluorescence spectra are recorded. 
The measurement of the binding constant is based on the 
changes in the fluorescence intensity with increasing con-
centration of p-SC4 [11]. The binding constant is calculated 
using Eq. (1).

Where  F0 is the fluorescence intensity of NHIP in the 
absence of p-SC4, F is the fluorescence intensity in the pres-
ence of various concentrations of p-SC4, [H] is the concen-
tration of p-SC4,  Ka is the binding constant, n is the stoi-
chiometric ratio.

The quenching constant,  kq is calculated by using the 
Stern–Volmer equation [30], Eq. (2).

The determination of thermodynamic parameters in the 
host–guest complex is the free energy change of a reaction. 
It can be calculated from the binding constant value using 
the following Eq. (3)

(1)log
[(

F0 − F
)/

F
]

= n log [H] + log Ka

(2)F0∕F = 1 + kqτ
[

p − SC4
]

(3)ΔG = −RT ln Ka

Fig. 1  Structure of p-Sulfon-
atocalix[4]arene (p-SC4) and 
N-(4-hydroxylphenyl) imidazole 
(NHIP)
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where, ∆G is the free energy change of the reaction, R is 
gas constant, T is temperature and ‘Ka’ is binding constant.

Fluorescence Lifetime

The excited state fluorescence lifetime is measured using 
time correlated single photon counting method (TCSPC). 
The pulsed-diode LED at 280 nm is used as light source to 
excite the molecule. The pulse-width is about 1.4 ns with 
an upper repetition rate of 1 MHz [32]. The concentration 
of NHIP is fixed (1 × 10− 4 M), the concentration of p-SC4 
is varied (0.5 × 10− 4 – 2 × 10− 4 M) and the excited state life-
time is recorded for these samples. The data generated is 
used to plot decay versus time. From the plot, the lifetime 
is calculated.

Cyclic Voltammetry (CV) Studies

The aqueous solution of 1 × 10− 3 M of NHIP and p-SC4 
are prepared seperately. The 10 ml of p-SC4 is taken in 
three electrode cell setup and CV is performed. Then 
increamental additions of 2 ml of NHIP is added and CV 
is recoreded. This procedure is continued up to 10 ml of 
NHIP so that the concentration will reach to 1:1 ratio. 
The above procedure is repeated by fixing 10  ml of 
NIPH with 2 ml of increamental additions of p-SC4 up 
to 10 ml.The recorded CVs are used to calculate bind-
ing constant [33, 34]. The binding constant is calculated 
using Eq. (4).

Where  IG is the oxidation peak current of guest mol-
ecule of NHIP, and  IHG is the oxidation peak current of 
inclusion complex of NHIP with p-SC4.  IHG−IG means 
the peak current difference between inclusion complex 
and guest molecule. ΔI is the difference between the 
molar peak current coefficient of the inclusion complex 
and NHIP;  [NHIP]0 and [p-SC4]0 are the initial concen-
tration of NHIP and p-SC4, respectively.

Sample Preparation for FT-IR Spectroscopy

The solid state inclusion complex is prepared using co-evap-
oration method. The p-SC4 (0.1 g) and NHIP (0.0193 g) 
having 1:1 ratio is taken in 5 ml of water in a 50 ml beaker 
and sonicated for 1 h. After getting a clear solution the mix-
ture is evaporated to dryness. The sample is further dried 
under vacuum to remove traces of water. The dried solid is 
used in the FT-IR spectral study.

(4)1
/(

IHG − IG
)

= 1∕ΔI + 1∕Ka[NHIP]0ΔI
[

p − SC4
]

0

Computational Details

All the calculations reported in this paper are performed 
with Gaussian 09 quantum chemical software package 
[35]. No symmetry constraints are imposed during the 
optimization of either individual fragments of complexes. 
The simulations are carried out in the gas phase. We used 
a hybrid meta-GGA based Minnesota functional (M06-2X) 
[36] along with the 6-31g(d) basis set. The chosen func-
tional is ideal for studying the non-covalent interactions. 
The vibrational frequency analysis is performed upon 
optimized geometries. The absence of imaginary fre-
quencies confirms the local minima of each structure on 
their respective potential energy surfaces. The interaction 

Fig. 2  Emission spectrum of NHIP (1 × 10− 5 M) in absence and 
presence of varies concentration (1 × 10− 5 M to 5 × 10− 5 M) of p-SC4

Fig. 3  Excited state lifetime spectrum of NHIP (1 × 10− 4 M) (Block) 
with increasing addition of p-SC4 (0.5 × 10− 4 M to 2 × 10− 4 M)
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energies reported in this paper are corrected for basis set 
superposition error (BSSE) [37].

Results and Discussion

Fluorescence Titration Study

The fluorescence spectra of NHIP is shown in Figure S1. 
The emission maxima of NHIP is 321 nm with excitation 
at 280 nm. The p-SC4 is not having fluorescent property. 
Therefore, the fluorescence is a suitable method to study 

the interaction between NHIP and p-SC4. The concen-
tration of NHIP is fixed, the concentration of p-SC4 
is varied as given in the Experimental section and the 
emission spectra is recorded. The emission spectrum of 
NHIP with various concentrations of p-SC4 is shown in 
Fig. 2. The emission intensity of NHIP is quenched in 
the presence of increasing concentration of p-SC4. The 
quenching is due to the binding of NHIP with p-SC4. 
The binding constant is calculated using the modified 
Stern–Volmer plot (Figure S2). The binding constant 
value calculated from Eq. 1 is 2.2 × 104  M− 1. The bind-
ing constant value exhibits strong binding between 
NHIP and p-SC4. The quenching constant is also cal-
culated using Stern–Volmer equation (Eq. 2). The Stern 
Volmer plot is given in Figure S3 and the quenching 
constant calculated is 3.3 × 1012  M− 1  S− 1. This quench-
ing constant value confirms the static quenching due to 
the ground state complex formation.

The binding ratio of NHIP-p-SC4 host–guest complex 
is studied using Job’s method. The concentration of NHIP 
is varied from 1 × 10− 5 M to 9 × 10− 5 M and the p-SC4 
concentration is in the reverse order from 9 × 10− 5 M to 
1 × 10− 5 M. The mole fraction is plotted with the emis-
sion intensity change (Figure S4). The Job’s plot confirms 

Table 2  Oxidation and 
reduction peak of p-SC4 
changes with addition of NHIP

S. no Concentration of 
p-SC4 (ml,  10− 3 
M)

Epa (V) Ipa (A) Epc
1 (V) Ipc

1 (A) Epc
2 (V) Ipc

2 (A)

1 0 0.594 8.135 × 10− 6 – – –
2 2 0.429 9.048 × 10− 6 − 0.203 − 9.917 × 10− 6 − 0.986 − 15.619 × 10− 6

3 4 0.409 9.371 × 106 − 0.203 10.469 × 10− 6 − 0.982 − 15.982 × 10− 6

4 6 0.389 9.431 × 10− 6 − 0.206 − 11.021 × 10− 6 − 0.968 − 16.539 × 10− 6

5 8 0.376 9.482 × 10− 6 − 0.221 − 11.573 × 10− 6 − 0.968 − 17.642 × 10− 6

6 10 0.372 9.607 × 10− 6 − 0.248 11.941 × 10− 6 − 0.968 − 17.642 × 10− 6

Fig. 4  CV of p-SC4 (10 ml of  10− 3 M) with addition of increasing 
volume of NHIP

Table 1  Excited state lifetime of NHIP with various concentration 
p-SC4

S. no Concentration of p-SC4 Lifetime (τ) Ps

1 0 770.474
2 0.5 × 10 − 4 M 770.195
3 1 × 10 − 4 M 769.455
4 1.5 × 10 − 4 M 767.182
5 2 × 10 − 4 M 763.611

Fig. 5  CV of NHIP (10 ml of  10− 3 M) with addition of increasing 
volume of p-SC4
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the 1:1 binding of NHIP with p-SC4. The free energy 
change (ΔG) of host–guest complex calculated using 
Eq. 3 is −25.2 KJ  mol− 1. The negative ΔG value indicates 
that the host–guest complexation process is spontaneous.

Excited State Lifetime Using TCSPC

The excited state lifetime of NHIP is 770.474 Ps. The con-
centration NHIP is fixed at 1 × 10− 4 M, the p-SC4 concen-
tration is varied from 0.5 × 10− 4 M to 2 × 10− 4 M and the 
excited state lifetime is recorded. The decrease in the life-
time is observed by increasing concentration of p-SC4. The 
changes in the fluorescence decay are shown in Fig. 3 and 
the lifetime data is collected in Table 1. The decrease of flu-
orescence lifetime is due the binding of NHIP with p-SC4.

Electrochemical Properties

The cyclic voltammogram of p-SC4 is shown in Figure S4. 
The shoulder peak around 0.8 V, is the oxidation of phe-
nolic moiety present in the p-SC4 [38]. The 1 × 10− 3 M 
of 10 ml of p-SC4 is taken in the cell setup. The 2 ml 
of incremental additions of NHIP is added to the p-SC4 
and CV is recorded for each addition. The oxidation peaks 
current (around 0.8 V) is increased and shifted to zero 
potential and the reduction peak at − 0.215 and 0.955 V 
appeared (Fig. 4), these changes are due to the formation 

of the inclusion complex between NHIP and p-SC4. The 
peak potential and peak current values of each addition is 
collected Table 2. The binding constant is calculated using 
Benesi–Hildebrand method (Eq. 4). The binding constant 
is calculated using Benesi–Hildebrand plot (Figure S6) 
and the binding constant value is 2.6 × 102  M− 1.

The CV of NHIP is shown Figure S7. This figure shows 
one oxidation peak (− 0.145 V) and two reduction peaks 
(− 0.168 and − 0.613 V). The peak − 0.613 V is due to the 
presence of imidazole group present in NHIP [39]. The 
1 × 10− 3 M of 10 ml NHIP is fixed and the 2 ml incremental 
addition of p-SC4 are added and CV is recorded (Fig. 5). A 

Table 3  Reduction peak of 
NHIP changes with addition of 
p-SC4

S. no Concentration of NHIP 
(ml,  10− 3 M)

Epc
1 (V) Ipc

1 (A) Epc
2 (V) Ipc

2 (A)

1 0 − 0.168 − 9.966 × 10− 6 − 0.613 − 18.573 × 10− 6

2 2 − 0.124 − 11.291 × 10− 6 − 0.783 − 19.677 × 10− 6

3 4 − 0.151 − 13.056 × 10− 6 − 0.811 − 19.531 × 10− 6

4 6 − 0.168 − 14.159 × 10− 6 − 0.821 − 19.361 × 10− 6

5 8 − 0.101 − 15.042 × 10− 6 − 0.842 − 19.124 × 10− 6

6 10 − 0.213 − 15.488 × 10− 6 − 0.841 − 19.124 × 10− 6

Table 4  Oxidation peak of NHIP changes with addition of p-SC4

S. no Concen-
tration of 
NHIP (ml, 
 10− 3 M)

Epa
1 (V) Ipa

1 (A) Epa
2 

(V)
Ipa

2 (A)

1 0 − 0.145 8.081 × 10− 6 – –
2 2 0.075 9.371 × 10− 6 0.956 23.831 × 10− 6

3 4 0.155 10.913 × 10− 6 0.982 26.553 × 10− 6

4 6 0.199 11.572 × 10− 6 1.012 27.281 × 10− 6

5 8 0.261 12.686 × 10− 6 1.047 28.281 × 10− 6

6 10 0.297 13.12 4 × 10− 6 1.074 28.692 × 10− 6
Fig. 6  FT-IR spectra of p-SC4, NHIP and p-SC4-NHIP complex
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new oxidation peak at 0.95 V is observed and the reduction 
peak at − 0.613 V is decreased. The oxidation peak is due to 
the –OH group present in the p-SC4. The reduction peak at 
− 0.613 V is decreased further and moved to more negative 
side by addition of p-SC4. The electron density decreases 
due to the –OH of NHIP interact p-SC4 to form complex 
(Tables 3 and 4). The binding constant is calculated using 
Benesi–Hildebrand method (Eq. 4). The Benesi–Hildebrand 
plot is shown in Figure S8 and the binding constant value 
calculated is 7.6 × 102  M− 1.

FT-IR Spectral Studies

The FT-IR spectra of p-SC4, NHIP and p-SC4- NHIP inclu-
sion complex are shown in Fig. 6. The peak at 1601 cm− 1 
is due to the –C–C– of imidazole ring and the peaks at 
1541 cm− 1, 1513 cm− 1, 1440 cm− 1 are due to the C–N. 
The peaks at 1541 cm− 1, 1440 cm− 1 are disappeared and 
1513 cm− 1 is shifted to 1509 cm− 1. These changes are 
attributed to the interaction imidazole group of NHIP to the 
p-SC4 cavity. These results resembles our previous reports 

Fig. 7  The optimized geom-
etries of p-SC4 (top) and NHIP 
(bottom) obtained at M06-2X/6-
31G(d) level of the theory
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Fig. 8  The optimized geom-
etries of the complexes p-SC4-
NHIP. The NHIP is oriented in 
a Horizontal, b Vertical-1 and c 
Vertical-2. The hydrogen bond 
is shown in the circle

a

b

c
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of cavity binding of p-SC4 with respective guest molecules 
[40, 41]. The cavity binding of NHIP with p-SC4 is con-
firmed using FT-IR spectral studies.

Computational Studies

To further explore the interactions between NHIP and 
p-SC4, we make use of quantum chemical simulations. 
The calculations assisted in elucidating the most stable 
orientation of NHIP in the cavity of p-SC4 and to deter-
mine the interaction energy. In order to find the most sta-
ble orientation, we modeled three host–guest complexes. 
In the first model, the NHIP was oriented horizontally 
in the cavity of p-SC4. In the second model (Vertical-1), 
the NHIP is oriented vertically and the hydroxyphenyl 
ring placed inside the cavity of p-SC4. In the third model 
(Vertical-2) also the NHIP is oriented vertically but the 
imidazole ring is placed inside the cavity of p-SC4. The 
optimized structures of p-SC4 and NHIP are shown in 
Fig. 7 and the complexes are shown in Fig. 8. The simu-
lated interaction energies of three modeled systems are 
compiled in Table 5. The interaction energy of NHIP 
with p-SC4 is more (− 18.99 kcal/mol) when it is ori-
ented horizontally and this high interaction energy can 
be attributed to the H-bonding formed between the 
hydroxyl hydrogen of NHIP and one of the sulfonyl oxy-
gen of p-SC4. The interaction energies are found to be 

− 13.89 and − 16.93 kcal/mol for vertical-1 and vertical-2 
models, respectively. The negative sign of the interac-
tion energy indicates the stabilization upon complexation. 
The BSSE uncorrected interaction energies and the dipole 
moments of the complexes were also given in the same 
table. For the most stable complex (model-1), we have 
carried out the population analysis to study the charge 
transfer phenomenon. In the HOMO of the complex, the 
electron density is fully localized over NHIP whereas 
in the LUMO the electron density is completely shifted 
to the p-SC4. The electron density distribution plots of 
the frontier molecular orbitals are given in Fig. 9. From 
the electron density distribution plots, it is clear that the 
charge transfer takes place from the NHIP to p-SC4 upon 
complexation.

Conclusion

The binding constant value of NHIP with p-SC4 using 
fluorescence technique is around  104  M− 1, confirms the 
efficient binding of NHIP with p-SC4. The quenching 
constant is also around 3.3 × 1012  M− 1  S− 1 emphasized 
the presence of static quenching due to the ground state 
complex formation. The CV studies shows the changes 
in the redox behavior of NHIP in the presence of p-SC4. 
The binding constant value calculated using CV tech-
nique is around  102  M− 1. Since the fluorescence tech-
nique is more sensitive technique than electrochemical 
techniques the binding constant value from fluorescence 
technique is higher than the value from CV technique. 
The FT-IR spectral study confirms the cavity binding 
of NHIP with p-SC4. The DFT studies revealed that the 
NHIP binds strongly with p-SC4 in its horizontal orien-
tation. The calculated electron density distribution plots 
confirm the charge transfer from NHIC to p-SC4 upon 
complexation.

Table 5  Simulated complexation energies and dipole moments of 
horizontally and vertically oriented NHIP with p-SC4 obtained at 
M06-2X/6-31G(d) level of the theory

p-SC4-NHIP BSSE uncor-
rected (kcal/
mol)

BSSE cor-
rected (kcal/
mol)

BSSE 
energy 
kcal/mol

Dipole 
moment 
(D)

Horizontal − 28.53 − 18.99 9.54 13.44
Vertical-1 − 22.45 − 13.89 8.56 17.03
Vertical-2 − 25.78 − 16.93 8.85 12.52

HOMO LUMO

Fig. 9  The calculated charge transfer in frontier molecular orbitals of the complex p-SC4-NHIP
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