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Abstract Using the density functional theory (DFT), we
studied two model croconate dyes, one with an electron-
donating substituent (CR1) and the other with an electron-
withdrawing group (CR2). The geometric, electronic, and op-
tical properties of these dyes were compared. Upon switching
from CR1 to CR2, a considerable bathochromic shift was
observed in the electronic absorption spectrum. We also in-
vestigated the adsorption behavior of the two dyes on a TiO2

(101) anatase surface by employing periodic DFTsimulations.
The periodic electronic-structure calculations revealed that the
diketo group of CR1 bound more strongly to the TiO2 surface
than that of CR2, with a binding strength comparable to that of
a typical organic D–π–A dye. In this work we evaluate in
particular the effect of the electron withdrawing/donating na-
ture of the substituent on the electronic, optical, and adsorp-
tion properties of the croconate dyes. Finally, we hope that the
present study will help in the design of highly efficient dyes
for dye sensitized solar cells by considering substituent
effects.
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Introduction

As renewable energy devices, dye sensitized solar cells
(DSSCs) have attractive features, such as low fabrication cost,
light weight, mechanical flexibility, and ease of processing,
compared to first and second generation photovoltaic cells
[1, 2]. In a standard DSSC, dyes are grafted onto the surface
of a wide band gap semiconductor, such as NiO, ZnO, or TiO2

via anchoring groups, such as carboxylic, sulfonic or phos-
phonic acids. The semiconductor is in contact with an electro-
lyte (typically I�=I�3 in an organic solvent) and closed by a
counter electrode, generally made of Pt [3, 4]. Upon the ab-
sorption of light, the ground state dye molecule (S0) is excited
electronically (to S1), and injects electrons into the conduction
band of the semiconductor within a femtosecond lifetime.
Subsequently, the dyes are oxidized, and the oxidized dyes,
once reaching the ground state, are regenerated by the redox
couple present in the electrolyte [5]. The efficiency of DSSCs
is affected by a range of factors, such as the energy difference
between the excited state of the dye and the conduction band
of TiO2, the grafting of the dye onto the semiconductor (TiO2),
and the properties of the redox couple in the electrolyte [6].

DSSCs employing ruthenium(II) polypyridyl complexes as
sensitizers achieve power conversion efficiencies of 11–12 %
under standard global air mass 1.5 (AM 1.5G) [5, 7]. The
Gr tzel group recently reported a record high conversion effi-
ciency of 13 % using Zn-porphyrin dyes [8]. These metal-
based DSSCs, however, are not environmentally friendly
and require complicated synthesis and purification processes
[9]. On the other hand, metal-free organic dyes have benign
environmental effects, high molar extinction coefficients and
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reasonably cheap preparation processes [10]. The organic
D–π–A dyes exhibit 10 % efficiency under AM 1.5G [11].
Several organic dyes, such as coumarins [12–15],
merocyanine [16, 17], hemicyanine [18, 19], indoline [20,
21], squaraines [22–26], and croconates [27], are also known
to give reasonably good efficiencies.

In particular, croconate dyes, having relatively short back-
bones containing an oxyallyl subgroup (Fig. 1), can be syn-
thesized easily and give rise to DSSCs that are flexible and
interact strongly with light [28, 29]. In addition, croconate
dyes have narrow and intense absorption bands in the near
infrared (IR) region, and can absorb light even at wavelengths
greater than 1100 nm [30, 31]. The near IR absorption of
croconate dyes has been attributed to their biradical character
[32, 33].

Chemical substitution is an effective method with which to
fine tune the absorption and photophysical properties of a dye
[10]. Herein, using the density functional theory (DFT), this
study showed how chemical substitution on the croconate ring
influences the structural, electronic and optical properties of the
dye. In particular, the present study investigated two model
croconate dyes, CR1 and CR2, with electron-donating
(methyl) and -withdrawing (carboxylic acid) substituents, re-
spectively (Fig. 1). We considered COOH as an electron-
withdrawing group, instead of NO2 or CN, as it is the anchoring
group most widely employed in DSSC. As an electron-donating
groupwe limited our study to CH3 and in our future workwe are
interested to consider more fascinating electron-donating groups
such as NH2. This study also examined how these two different
substituents affect the adsorption strength of the diketo groups of
CR1 and CR2 to a TiO2 anatase (101) surface.

Computational details

The DFT/time-dependent DFT (TDDFT) calculations were
performed using the Gaussian 09 (G09) ab initio quantum

chemical software package [34]. The ground state (S0) opti-
mizations of CR1 and CR2 were performed using the unre-
stricted hybrid density functional UB3LYP [35–37] and
Pople’s split valence basis set with polarization and diffuse
functions, 6-311+G(d,p). The geometric optimizations were
taken to converge when the maximum internal forces acting
on all the atoms and the stress were<4.5×10−4 eV/Å and<
1.01×10−3 kbar, respectively. The vibrational frequencies
were checked to confirm that each configuration is a minimum
on the potential energy surface. No symmetry constraints were
applied during geometry optimizations.

The adiabatic singlet-triplet gap can be an estimate of the
degree of biradical character [32, 38]. For example, Wirz et al.
[39] suggested that a molecule can be considered biradical if
the splitting between the S0 and the lowest triplet state T1,
ΔES–T, falls within 2–24 kcal mol−1. To calculate the singlet-
triplet gap (ΔES–T), the lowest singlet (S0) geometries were
used as the initial geometries for optimizing the T1 geometries.
The T1 geometries of CR1 and CR2 were obtained at the
UB3LYP/6-311+G(d,p) level of theory. The optimized singlet
geometries were used to obtain the wave function stability.

The periodic DFT simulation was completed for the ad-
sorption of CR1 or CR2 to a TiO2 (101) anatase surface using
the PWscf code in the Quantum ESPRESSO suite [40]. Ge-
ometry optimization was performed using the ultrasoft
pseudopotentials of Vanderbilt [41] to describe the electron-
ion core interaction. The Perdew-Wang 1991 [42] exchange
correlation functional was used for the valence electrons: 2s2

and 2p4 for oxygen and 3s2, 3p6, 3d2 and 4s2 for titanium. The
Kohn-Sham orbitals were expanded in a plane-wave basis set
with a kinetic energy cutoff of 25 Ry, whereas the augmented
density cutoff was expanded to 200 Ry. The Brillouin zone
was sampled with a 1×2×2 Monkhorst-Pack k-points [43]
mesh. The k-space sampling used in the present study has
been used successfully in earlier reports with similar kinds
of systems [44, 45]. The Broyden-Fletcher-Goldfrab-Shanno
(BFGS) [46] algorithm was used for relaxation of the TiO2

surface, the CR dyes and CR@TiO2 complexes.
The anatase (101) surface was modeled as a super cell made

from a slab of 24 TiO2 units. Perpendicular to the slab, i.e., along
the surface normal, a vacuum space of 13 Å was placed to
prevent unwanted interactions between the periodic slabs. The
atomic positions of the bottom layer of the super cell were fixed
during structural relaxation. In the case of the TiO2 surface, the
triclinic unit cell had dimensions of a=10.24 Å, b=11.35 Å and
c=18.86 Å and contained 72 atoms (see Fig. S1). The adsorp-
tion energy (Eads) of a dye to the TiO2 surface was calculated
using the following equation:

Eads ¼ EDye@TiO2
− EDye þ ETiO2

� �
;

where EDye@TiO2
is the total energy of the dye@TiO2 com-

plex, EDye is the energy of the dye, and ETiO2 is the energy
Fig. 1 Structures of the oxyallyl subgroup and the present two model
croconate dyes, CR1 and CR2
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of the TiO2 surface. A negative value of Eads indicates sta-
ble adsorption.

Results and discussion

Molecular structure

Table 1 lists the optimized structural parameters of the two
croconate (the optimized CR1 and CR2 structures are drawn
in Fig. 2). Previously, the present DFT methods reproduced
the experimental geometries of the croconate derivatives [32,
33]. The O1–C2 bond length of the oxyallyl subgroup in CR1
was 1.229 Å, which is longer than that of C5–O7/C6–O8

(1.213 Å). Similarly, in the case of CR2, the O1–C2 bond
length was 1.216 Å, which longer than that of C5–O7/C6–O8

(1.208 Å). This suggests that the oxyallyl O1–C2 bond has
relatively more single bond character than that of C5–O7/C6–
O8. Note that the O1–C2 bond in the last two of the three
resonance structures of the oxyallyl subgroup is a single bond
(see Fig. 3). The positive charge on either C3 or C4 in these
resonance structures was stabilized in the presence of an
electron-donating methyl group. Therefore, the resonance
structures with single bond character in the O1–C2 bond will
be stabilized in CR1. On the other hand, the same resonance
structures will be destabilized in CR2 because of the electron-
withdrawing (–COOH) substituent. The first resonance struc-
ture shown in Fig. 3, where O1–C2 is a double bond, will
dominate in this case. Therefore, the oxyallyl O1–C2 bond in
CR1 has larger single bond character than that of CR2. Neither
the C2–C3/C2–C4 nor C3–C5/C4–C6 bond length varied when
the dye was changed fromCR1 to CR2. The C3–R/C4–R bond
length increased considerably by switching fromCR1 to CR2.
The bond angles of CR1 and CR2 were similar.

Electronic structure and frontier molecular orbitals

Figure 4 shows the frontier molecular orbitals involved in the
dominant electron transitions of CR1 and CR2. The highest
occupied molecular orbitals (HOMOs) of the two dyes are
situated mainly on the diketo groups, and partly on both the
central croconate ring and the substituents. The lowest unoc-
cupied molecular orbitals (LUMOs), however, are situated
mainly on the central croconate ring and partly on the diketo
groups and substituents. The HOMO energies of CR1 and
CR2, respectively, are −7.43 and −8.08 eV. The LUMO ener-
gies of CR1 and CR2 were found to be −5.07 and −6.06 eV,
respectively (Table 2). With the change from CR1 to CR2, the
HOMO and LUMO were stabilized by 0.65 and 0.99 eV, re-
spectively. The HOMO–LUMO gap (HLG) values of CR1
and CR2 were 2.36 and 2.02 eV, respectively. The ground
state dipole moments (μg) of CR1 and CR2 were 2.57 and
1.57 D, respectively (see Table S1 in the supplementary
data). The dipole moment decreased considerably (by 1.0 D)
as the dye was switched from CR1 to CR2 because of the
carboxylic acid substituent.

Singlet (S0) - triplet (T1) gaps and biradical character

Oxyallyl is a derivative of trimethylenemethane (TMM)—a
biradical species (Fig. S2, the supplementary data) [47]. A
previous theoretical study showed that the substitution of
one of the methylene groups in TMM by an oxygen atom
results in the singlet and triplet states of oxyallyl being
almost isoenergetic [48], which has also been confirmed
experimentally [49, 50]. The biradical character of TMM
is reduced by the substitution of one of the methylene
groups with a heteroatom [48]. Fabian and Zahradnik [28,
29] classified such a dye as a biradicaloid dye and attributed

CR1 CR2

Fig. 2 Optimized geometries of
two model croconate dyes CR1
and CR2

Table 1 Optimized structural parameters of two model croconate dyes, CR1 and CR2, in the ground state obtained from the UB3LYP/ 6−311+G(d,p)
level of theory. Bond distances and angles are in units of Å and degrees, respectively

Dye O1−C2 C2−C3/C2−C4 C3−R/C4−R C3−C5/C4−C6 C5−O7/C6−O8 O1C2C3/O1C2C4 C3C2C4

CR1 1.229 1.458 1.462 1.468 1.213 128.4 103.3

CR2 1.216 1.465 1.480 1.466 1.208 128.4 103.2
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the absorption in the near IR region to their biradicaloid
nature with a small HLG. Figure S2 (the supplementary
data) shows the perturbation of the biradical to the
biradicaloid after substituting CH2 with O.

The singlet state was lower in energy than the triplet state
for both CR1 and CR2, confirming that the singlet is the
ground state for these dyes. The calculated singlet–triplet gaps
were small, suggesting that the present croconate dyes are
biradical in nature. Table 2 lists the adiabatic singlet–triplet
gaps for the two croconate dyes. The adiabatic singlet–triplet
gap decreased with the change from CR1 (10.49 kcal mol−1)
to CR2 (2.23 kcal mol−1), indicating the relatively low birad-
ical character of CR1. The wave function stability of the two
model croconate dyes was estimated from the analysis

proposed by Reinhart Ahlrichs [51, 52]. Table 2 presents the
wave function stability eigenvalues. A small negative eigen-
value, for both CR1 (−0.01265) and CR2 (−0.02535), indi-
cates mild external instability in the wave function due to the
biradical character.

UV-vis absorption spectra

Croconate dyes generally exhibit red to near IR absorption
[30, 31, 48], which is a good feature for DSSC applications.
The TDDFTwas used to understand the nature of the excited
states and to examine the vertical excitation energies of the
two croconate dyes. Table S1 (supplementary data) lists the
present calculations of the electronic transition energies, the
transition dipolemoments and the oscillator strengths. Figure 5
presents the absorption spectra. The most intense and lowest
energy singlet transitions of CR1 and CR2 were observed at
535 and 635 nm, respectively. The major transitions in the
low-energy region were assigned to HOMO−1 to LUMO ex-
citation. See the supplementary data (Tables S2 and S3) for the
TDDFT data of the first 20 vertical singlet–singlet electronic
transitions. A very high bathochromic shift of 100 nm was
observed for CR2, which was attributed to the decreased HO-
MO–LUMO gap and increased biradical character [32, 33]
upon substitution of the electron-withdrawing COOH group.
The fascinating advantage of croconate dyes is to exhibit their
absorption in the red to near IR region. However, the absorp-
tion of the two model croconate dyes studied in the present
paper did not exceed 700 nm. Here, our main interest is to
explore the effect of the substituents on the photophysical
properties.

The ground to excited state transition dipole moments (μge)
for CR1 and CR2 were 4.59 and 4.13 D, respectively. Similar
to the trend observed for the ground state dipole moment, the
ground to excited state dipole moment also decreased with the
change from CR1 to CR2.

Light harvesting efficiencies

The overall conversion efficiency (η) of a DSSC can be cal-
culated from the integral photo-current density (Jsc), open-

Table 2 Highest occupied molecular orbital (HOMO), lowest
unoccupied molecular orbital (LUMO), and HOMO–LUMO gap
(HLG) values along with the singlet− triplet gap (ΔES–T) and
eigenvalue of the stability matrix for dyes CR1 and CR2

Dye HOMO
(eV)

LUMO
(eV)

HLG
(eV)

aΔES-T

(kcal mol−1)
Eigenvalueb

CR1 −7.43 −5.07 2.36 10.49 −0.01265
CR2 −8.08 −6.06 2.02 2.23 −0.02535

aΔES−T=ETriplet−ESinglet

b Taken from UB3LYP/6−311+G(d,p) optimized geometries

MO CR1 CR2

LUMO+1

-2.71 -3.27

LUMO

-5.07 -6.06

HOMO

-7.43 -8.08

HOMO-1

-7.47 -8.16

Fig. 4 Computed isodensity (isodensity contour: 0.02 e Å−3) surface
plots for HOMO−1 to LUMO+1 of CR1 and CR2 at UB3LYP/6-311+
G(d,p). Corresponding molecular orbitals (MO) energies (eV) are also
given

Fig. 3 Resonance structures of the oxyallyl subgroups
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circuit photovoltage (Voc), fill factor of the cell (FF) and the
intensity of incident light (Iph), as follows:

η %ð Þ ¼ J scV oc F F

Iph
� 100:

Here the JSC can be determined using the following
equation [53]:

JSC ¼
Z

LHE λð Þϕinjectηcollect
dλ;

where LHE (λ), ϕinject, and ηcollect are the light harvesting
efficiency at a given wavelength, λ, electron injection efficien-
cy and charge collection efficiency, respectively. The LHE (λ)
is given by [54].

LHE λð Þ ¼ 1−10− f ;

where f denotes the oscillator strength of the sensitizer at a
particular wavelength. Generally, an increased LHE value en-
hances the photocurrent response and thereby the efficiency of
the device. The LHE values of CR1 and CR2 calculated at
their respective λmax were 0.211 (21.1 %) and 0.164 (16.4 %),
respectively (Table S1 in the supplementary data). The LHE
value of CR1 was 0.147 larger than that of CR2. Therefore,
the dye CR1 is more efficient than CR2 in light harvesting at
their corresponding λmax. The calculated LHEs for CR1 and
CR2 are moderate at their λmax, but a very high value of LHE
(0.620) for the dye CR1 is achieved at 224 nm.

Adsorption of dyes on TiO2 anatase (101) surface

The binding strength of the CR1 or CR2 to a TiO2

surface was investigated. Although the rutile form of
TiO2 is thermodynamically more stable, anatase is pre-
ferred for DSSC applications because of its relatively

large band gap (3.2 eV) and high conduction band en-
ergy [10]. The (101) surface, which is the most stable
anatase surface, was chosen for simulation [55, 56]. To
ensure the consistency and reliability of our adsorption
simulation, the adsorption energy of a single water mol-
ecule on the TiO2 surface was calculated. The adsorption
energy and geometry of the water molecule on the sur-
face were compared with previous results (see Table S4
and Fig. S3 in the supplementary data). The calculated
adsorption energy of water was −12.20 kcal mol−1,
which is in excellent agreement with the previous exper-
imental estimates of −11.53 to −16.14 kcal mol−1 [44,
45, 57, 58].

An organic D–π–A dye or an organo-metallic rutheni-
um dye binds to a TiO2 surface via its carboxylic anchor-
ing groups. On the other hand, the present study consid-
ered the adsorption of CR1 or CR2 via its diketo group to
the TiO2 surface. Figure S4 (see supplementary data) pre-
sents several plausible configurations of the adsorption. In
the monodentate ester type (MET) configuration (a), one
keto group participates in the binding. The second config-
uration (b) is a bidentate chelating (BC), in which only
one Ti atom of the slab (Ti5C) binds to both keto groups.
In the third configuration (c), called the bidentate bridging
(BB), each keto group binds to a five coordinated Ti at-
om. The BB configuration, which has been shown to be
most stable among the three configurations above, was
examined [44, 58, 59].

The TiO2 slab was optimized by imposing the periodic
boundary conditions implemented in Quantum ESPRESSO
code. The optimized structures of CR1 and CR2 above
(from G09) were used for the adsorption studies. The dyes
were adsorbed on the TiO2 in the BBmode and the resulting
complexes (dye@TiO2) were relaxed. Figure 6 shows the
optimized structures of the CR1@TiO2 and CR2@TiO2

complexes. The C=O bond length of the diketo group for
CR1 and CR2 was elongated slightly upon adsorption from
1.21 to 1.25 Å and from 1.20 to 1.24 Å, respectively. This
elongation, which is 0.04 Å for both dyes, indicates that the
dyes interact strongly with the TiO2 surface. Figures S5 and
S6 show several bond lengths in the optimized geometries of
CR1@TiO2 and CR2@TiO2 complexes (see supplementary
data).

The adsorption energies of CR1 and CR2 were −23.18 and
−17.70 kcal mol−1, respectively (Table 3). Therefore, the dye
with an electron-donating substituent binds more strongly to
the surface than the one with an electron-withdrawing substit-
uent. This is consistent with an earlier report [45] that
croconate with an NH2 substituent binds more strongly to
the surface than this dye with a methyl substituent. That is,
the adsorption strength increases with increasing electron do-
nating power of the substituent. The enhanced adsorption of
CR1 compared to CR2 is also manifested in the fact that the

Fig. 5 Simulated UV-vis absorption spectra of CR1 (top) and CR2
(bottom). The vertical bars represent the oscillator strengths and the
spectral lines are broadened by using the Gaussians with full width at
half maximum (FWHM)=2000 cm−1
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Ti5C–O7 and Ti5C–O8 distances of CR1@TiO2 are smaller
than those of CR2@TiO2. The adsorption energy of the CR1
is comparable to the adsorption energies of several organic
D–π–A dyes with COOH anchoring groups [60, 61].

The density of states (DOS) for the clean TiO2 surface,
CR1@TiO2 and CR2@TiO2 was calculated (Fig. S7, supple-
mentary data). We also calculated the projected DOS (PDOS)
for the dyes. The DOS show broad surface valence and con-
duction bands separated by a wide band gap (ca. 2 eV). Upon
adsorption, the dyes develop sharp occupiedmolecular energy
levels in the TiO2 band gap. The conduction band edge of the
TiO2 surface is shifted by the adsorption but the band gap
remains almost the same.

Conclusions

Using DFT simulations, the two model croconate dyes with
methyl and carboxylic acid substituents, CR1 and CR2, re-
spectively, were investigated systematically. Substituent ef-
fects on the structural, electronic, optical, and adsorption prop-
erties were studied. The effects of the substituent on the struc-
ture of the dye were modest but the optical properties varied
significantly depending on the substituent. Periodic DFT cal-
culations showed that the binding energy of the diketo groups
of the croconate dye on TiO2 surface is controlled by the
nature of the substituent present on the croconate dye. The
binding energy of the croconate dye with CH3 substitution
was significantly higher than that of the dye with COOH sub-
stitution. The croconate dye (CR2) had a smaller singlet–trip-
let gap and a larger biradical character. The higher binding
energy and light harvesting efficiency of CR1 compared to
CR2 makes it favorable for DSSC applications.
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