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Using the lattice Boltzmann method, we simulated a water droplet on a surface covered with rectangular or
parabolic pillars. With increasing spacing between the pillars, the transition from the Cassie to Wenzel states
of the droplet was observed. The critical spacing at which the transition occurs and the contact angle of droplet
were compared with those obtained from the macroscopic theories of Cassie and Wenzel. The present simu-
lation revealed intermediate states where the droplet was partially impaled by the pillars. Even in the Cassie
state, the droplet significantly penetrated down in the gap between the parabolic pillars.
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Introduction

Corrugating a surface with small pillars can greatly enhance
the hydrophobicity of a surface. Lotus leaves, for example,
have numerous parabolic pillars on their surfaces, so that
the water droplets have high contact angles (>120°) and are
very mobile on these leaves.' Micro- and nano-pillars of var-
ious shapes have been constructed to produce superhydropho-
bic surfaces. Typically, parabolic or rectangular pillars are
periodically constructed and the spacing between pillars is
systematically varied to achieve the highest contact angle of
a water droplet on such a pillared surface.

The contact angle and mobility of a water droplet on a pil-
lared surface critically depends on whether the droplet is
impaled by the pillars or not (see Figure 1). The former and
latter cases are, respectively, called the Wenzel and Cassie
states of the droplet. The contact angle of a droplet in the Wen-
zel state 0V% is given by?

cos OV =V cos 6; (1)

where 0; is the intrinsic contact angle of a macroscopic droplet
deposited on a flat surface and % (>1) is the ratio of the total
solid surface area to the projected area in the horizontal plane.
On the other hand, the contact angle of a droplet in the Cassie
state 0 is®

cos 0B =fB(1+cos ;)1 (2)

where fCB (<1)is the fraction of the solid surface area in contact
with the droplet to the solid surface area projected onto the
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horizontal plane. In both the Wenzel and Cassie theories
above, the droplet is assumed to be infinitely large relative
to the size of pillar.

Note that the gap between the pillars is empty for the Cassie
state but filled with liquid for the Wenzel state. Microscopi-
cally, the Wenzel or Cassie state of a droplet should be deter-
mined by the interplay between the intermolecular cohesion
and interfacial energy of the water confined in the gap between
the pillar walls. With decreasing inter-pillar spacing S, the
water confined between the pillars reduces its volume and
its degree of cohesion. Below a critical value Sc, the confined
liquid is unstable and evaporates, giving rise to a Cassie state.

In designing a hydrophobic pillared surface, one would like
to know how the Cassie or Wenzel state of the droplet is

(a) (b)

Figure 1. Schematic illustration of the Wenzel (top) and Cassie (bot-
tom) states of a water droplet resting on the periodic array of rectan-
gular (a) or parabolic (b) pillars. W and H refer to the width and height
of each pillar, respectively, and the spacing between neighboring pil-
lars is denoted by S.
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affected by the spacing between pillars. Exploring this exper-
imentally is costly and time consuming. Theoretical investiga-
tion therefore emerges as a viable option for this quest. Here
we employ the lattice Boltzmann method (LBM) to study this
aspect. The LBM is a microscopic and dynamic approach that
enables us to study the structure and dynamics of the water
droplet,*'® which is not available in the macroscopic Cassie
and Wenzel theories. Specifically, we examine the transition
between the Wenzel and Cassie states by systematically vary-
ing the inter-pillar spacing S for a periodic array of rectangular
or parabolic pillars. We calculate the critical spacing at which
Cassie-to-Wenzel transition occurs and the contact angles of
the water droplets on these pillared surfaces. These results
are compared with the Wenzel and Cassie theories. We also
investigate the dynamics of a water droplet that was initially
in the Wenzel state and eventually in the Cassie state.

Simulation Method

We simulated a two-dimensional (2D) periodic array of rec-
tangular or parabolic pillars on a flat surface (see Figure 1).
The width W and height H of pillar and the spacing between
pillars S are defined in Figure 1. Both W and H were set to
21 grid spacings.

In the LBM simulation, the time evolution of the distribu-
tion function f(x, f) was numerically solved on a 2D square
grid, D2Q9. Ateach grid point.x, nine discrete velocity vectors
e;s (i=0-8) are assigned (four for horizontal moves, four for
diagonal moves, and one for no move). The effects of stream-
ing and collision on each grid point are considered as''

[fix.t) £ (e, )]

fi(x+eAt 1+ At) =fi(x,1) — ! )

where 7 is the relaxation time for equilibration, and At is the
time step. 7 is related to fluid kinematic viscosity v as v=
1/3(t — 1/2).* Choosing T = 0.7 gave an intrinsic contact angle
typical for a hydrophobic surface. The equilibrium distribu-
tion function £ (x,7) is given by

eiu 9(epu) 3u
Z 20 @
2 T2 A 2 “)

Fx ) =wp(x,t) [1+3

where the weight factors w;s are 1/9 for vertical and horizontal
moves, 1/36 for diagonal movements, and 4/9 for no movement.
c is the grid spacing per time step. The attraction between near-
est neighbor fluid particles is modeled by using the method of
Shan and Chen.'? The fluid—solid interaction was taken into
account by following Martys and Chen."® All quantities are
reported in the units of grid spacing and time step Ar.

A square grid with a size of 461 x 250 points was used. In
the case of a flat surface, a water droplet rectangular in shape
(301 x 151) was initially placed on the surface. For a pillared
surface, a rectangular water droplet was initially placed on top
of the pillars and the gap between pillars was filled with the
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droplet (Wenzel state). The inter-pillar spacing S was varied
as 3, 5, 10, 15, and 20.

We calculated the contact angle of a droplet from the scaled
density pg of each grid point, which is defined as the density
divided by the highest density. The contour line of pg=0.5
(Figure 2) was taken to be the periphery of the droplet (drawn
as circles in Figure 2). The periphery points were then fitted to
a quadratic function, y=Ax”+ Bx+ C. The resulting fit is
drawn as the red line in Figure 2. The contact angle was
obtained from the tangential line at y=0 (broken line in
Figure 2)."* We simulated droplets with various sizes whose
base radii Rgs varied as 81, 97, 132, and 149. The correspond-
ing contact angles Os decreased with increasing the size of
droplet as 110.53°, 109.07°, 107.47°, and 108.86°. The mod-
ified Young's equation predicts cos 0 is a linear function of
1/Rg given by'”

cos 0= cos 0; =g/ (Rs ) (5)

where vy, is the solid-liquid—vapor line tension and v, is the
liquid—vapor surface tension. By fitting the four values of cos 6
to a linear function of 1/Rg, the intrinsic contact angle was esti-
mated from the fit value at 1/Rg = 0. The resulting 6, was 98.94°.

The Wenzel and Cassie theories, Egs. (1) and (2) were
implemented by calculating #'* and f<® as follows. r%s
for the surfaces covered with the rectangular and parabolic pil-
lars are, respectively, given by 1 + 2H/(W + S) and (p/2)/(W +
S). Here, p is an approximate circumference of the parabola
given by z[(W/2+H)—\/(3W/2+H)(W/2+3H)].'"® /®
of the surface covered with the rectangular pillars is given
by W/(W + S). /< for a surface covered with the parabolic pil-
lars is O if the droplet does not penetrate down into the gap
between the pillars. In the LBM simulation, however, the
droplet partially penetrated down into the gap. We therefore
calculated /® from the LBM simulation by measuring the pro-
jected area of the parabolic surface in contact with the droplet.
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Figure 2. Periphery of a water droplet on a flat surface. Drawn as cir-
cles are the peripheral points obtained from the present LBM simu-
lation (ps=0.5). The red line is the quadratic fit to the peripheral
points. The broken line represents the tangential line at y = 0, which
is used to calculate the contact angle 6.
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Results and Discussion

Shown in Figure 3 are the equilibrium snapshots of the water
droplets deposited on rectangular (left) and parabolic (right)
pillars. These snapshots were taken at the time of 30 000. Typ-
ically, the equilibrium was reached within 3000 time steps. As
S increased from 3 (top) to 5, 10, 15, and 20, the water droplet
in the Cassie state penetrated down into the inter-pillar gap to
be in the Wenzel state. Notice that the Cassie-to-Wenzel tran-
sition at § =5 (second from top) is incomplete, however. Only
a portion of the inter-pillar gap below the droplet is filled with
the droplet and the rest of the gaps are empty. These interme-
diate states persisted even after running the simulation for
40 000 time steps.

In case of a macroscopic droplet, the state with a lower con-
tact angle is thermodynamically stable.'” In this perspective,
the transition between the Cassie and Wenzel states occurs
when the contact angles from the Cassie (Eq. (2)) and Wenzel
(Eq. (1)) theories become identical. The Sc obtained this way
is drawn as a vertical line in Figure 4. We also show the Sc
from simulation, which was directly observed in the LBM sim-
ulation. One can see that the macroscopic theory slightly
underestimates Sc relative to the LBM value.

Figure 3. Cassie-to-Wenzel transition of a droplet on a surface cov-
ered with rectangular (left column) or parabolic (right column) pillars.
As the inter-pillar spacing increases from 3 (top) to 5 (second from
top), 10 (middle), 15 (second from bottom), and 20 (bottom), the
droplet changes its state from a Cassie state (top) to a Wenzel state.

Bull. Korean Chem. Soc. 2015, Vol. 36, 896-899

© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

We investigated the contact angles of the water droplets in
simulation and compared them with those predicted from the
Wenzel and Cassie theories, Egs. (1) and (2). In Figure 4, the
contact angle is plotted versus S for the surfaces covered with
the rectangular (a) and parabolic (b) pillars. Overall, the LBM
contact angle decreased with increasing inter-pillar spacing,
ranging from 112.6° to 100.2°. One can see, however, that
the contact angle slightly increases by increasing S from
10 to 15. This contrasts with the monotonic decrease of the
Wenzel contact angle (solid line) with increasing S. Overall,
both the Wenzel (solid line) and Cassie (dotted line) theories
are in agreement with the LBM simulation. The Wenzel theory
contact angles are consistent with the overall decreasing fea-
ture of the LBM simulation results.

We studied the dynamics of the transition from the Wenzel
to Cassie state. Shown in Figure 5 are the time evolutions of the
droplets initially filling the gap between rectangular (a) and
parabolic (b) pillars (S = 5). The bottom surface of the droplet
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Figure 4. Contact angle of the water droplet resting on an array of
rectangular (a) or parabolic (b) pillars. The contact angle is plotted
versus the inter-pillar spacing S. The circles, triangles, and squares,
respectively, represent the Cassie, intermediate, and Wenzel states.
The lines connecting symbols are drawn for visual guidance. The
contact angles from the Wenzel and Cassie theories are plotted as
solid and dotted lines, respectively. Drawn as the vertical lines are
the critical inter-pillar spacing at which the Cassie-to-Wenzel transi-
tion occurs S..
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Figure 5. Time evolution of the Wenzel to Cassie state of the water
droplet initially filling the gap between the rectangular (a) or para-
bolic (b) pillars. At the top, the bottom surface of the water droplet
is drawn for different times. At the bottom, we plot the time variation
of the height of the droplet in the middle of the pillar walls y,;q. We
plot yiiq scaled by the height of pillar H. Drawn as horizontal dotted
lines are the positions of the half heights of the pillars.

eventually moved up to the top of the pillars (see the top two
panels). The surface of the droplet temporarily moved up and
down. This can be clearly seen in the time-dependent y posi-
tion of the bottom of the droplet at the midpoint between the
pillar walls, ynq (bottom two panels of Figure 5). The
time oscillation in y.;q is evident, especially for the gap
between parabolic pillars. y,,; was near the bottom of the pillar
(y =0) for short times, but it abruptly rose to the top of the pillar
starting at times 491 and 474 for rectangular and parabolic pil-
lars, respectively. y.iq for the gap between the rectangular
pillars stayed near the top of the pillars (y,,;¢/H = 1) but it con-
verged to 0.65 for the parabolic pillars. Therefore, one can see
the droplet in the Cassie state significantly penetrates down
into the gap between the parabolic pillars. In the top two panels
of Figure 5, one can also observe that the curvature of the lig-
uid surface can be upward at times (z = 2000 for the rectangular
pillars and 7= 1000 for the parabolic pillars). This type of
inversion of the curvature occurs when a liquid surface
touches the corner where two solid planes cross each other.'®

Although we tried to mimic the parabolic shapes of pillars
on the lotus leaves, real lotus leaves have a hierarchical struc-
ture where microscale pillars are topped with nanoscale pil-
lars. The present study only considered the primary shapes
of the pillars found on lotus leaves. Besides, only 2D pillars
were considered because of computational simplicity. In the
future, we hope to model realistically the 3D and hierarchical
nature of the pillars on lotus leaves.

bolic pillars. By varying the spacing between neighboring pil-
lars, we examined whether the droplet is impaled by pillars
(Cassie state) or not (Wenzel state). Compared to the LBM
simulation, the macroscopic Cassie and Wenzel theories
underestimated the inter-pillar spacing at which the Cassie-
to-Wenzel transition occurs. Overall, the contact angle of
the water droplet from the Cassie or Wenzel theory was in
agreement with that of the LBM simulation. Interestingly,
we found states intermediate between the Wenzel and Cassie
states where the water droplet is partially impaled. The Cassie
droplet on the parabolic pillars significantly penetrated down
in the gap between pillars.
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