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ABSTRACT: This study theoretically examines the wetting of a cylindrical
cavity engraved on a hydrophobic surface, in the context of the Cassie−Baxter-
to-Wenzel transition of a water drop resting on such a surface. The stable,
metastable, and transition states and their free energies are identified by
constructing the free-energy profile of the wetting process. Wetting starts with
a liquid−vapor interface pinned at the top edge of the cavity and proceeds with
a symmetrically depinned interface. The liquid−vapor interface later becomes
annular upon its touching of the bottom of the cavity and finally asymmetric
before the cavity is fully wetted by the liquid. This study examines the effects of the cavity geometry and the pressure of the liquid
on the wetting and dewetting transitions.

■ INTRODUCTION

Superhydrophobic surfaces are used in numerous applications,
including water harvesting,1 impermeable textiles,2 antifogging,3

and self-cleaning paint.4 Inspired by natural surfaces, such as
lotus leaves and rose petals, a superhydrophobic surface is
typically constructed by engraving a regular array of micro- or
nanoscale cavities. Periodic cylindrical holes5,6 and rectangular
trenches7,8 are commonly engraved for this purpose.
A macroscopic water drop resting on top of such small scale

cavities can wet or dewet the underlying cavities, giving rise to so-
called the Wenzel9 (WZ) or Cassie−Baxter10 (CB) state of the
drop, respectively. Because the transition of a water drop to the
WZ state deteriorates the hydrophobicity of a surface, a cavity
that gives rise to a stable CB state (which decreases the contact
area of the drop and the surface) is desirable. If a stable CB state is
not feasible, a long-lived metastable CB state is preferred instead.
In any case, a cavity that gives rise to a high free-energy barrier for
its wetting (CB to WZ) is suitable for superhydrophobic
applications.11,12

Understanding the stable, metastable, and transition states in
wetting and the free-energy barriers between these states can
provide a design principle for a cavity to be engraved on a
superhydrophobic surface. From a scientific viewpoint, the
wetting or dewetting transition of a confined system is a
fundamental problem pertaining to a range of phenomena in
various disciplines. Giacomello et al.13 presented a theory for the
wetting of a two-dimensional rectangular trench by constructing
the free-energy profile for the wetting. Herein, this paper
presents a theory for the wetting of a cylindrical cavity, which is a
common motif for cavities engraved on superhydrophobic
surfaces. The intermediate and metastable states and their free
energies in the wetting of cylindrical cavities are uncovered. By

solving the liquid−vapor interface either analytically or numeri-
cally, a cylindrical cavity is shown to be wetted in four steps. The
liquid−vapor interface is first pinned symmetrically and then
depinned. With further wetting, the interface becomes annular
upon touching the bottom of the cavity and finally asymmetric.
The free-energy barrier for the wetting or dewetting transition is
investigated by varying the aspect ratio of the cavity and the
pressure of the wetting liquid.

■ THEORY

Consider a cylindrical cavity with a width W and a depth D (as
shown in Figure 1). A macroscopic water drop much larger than
the cavity is resting on top of the cavity (z > D). The CB-to-WZ
transition of the drop can be regarded as the wetting transition of
the cavity.14,15 The grand potential of the fluid inside the cavity,
Ω,13 relative to that of the fully wetted cavity (the WZ state) can
be expressed

γ γ θΩ = Δ + +PV A A cosv lv lv lv sv (1)

where Vv is the vapor volume inside the cavity, Alv and Asv are the
areas of the liquid−vapor and solid−vapor interfaces, respec-
tively, γlv is the liquid−vapor-interfacial tension, and θ is the
intrinsic contact angle of the water drop on a flat surface.ΔP is the
pressure of the liquid in excess of the vapor pressure. By design,
Ω is 0 for the fully wetted WZ state. In addition,Ω is subject to a
constraint, Χ = χVcavity, where χ (χ ≤ 1) is the dimensionless
filling level of the cavity, and Vcavity is the volume of the cavity.
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Consequently, the grand potential to be minimized isΩ− λ(Vl−
Χ), where λ is a Lagrange multiplier, and Vl is the liquid volume
inside the cavity.
To calculate Ω, it is important to determine the liquid−vapor

interface, z(x), where z is the height measured from the bottom
of the cavity, and x (|x| ≤ W/2) is the lateral position measured
from the symmetry axis (Figure 1a). By writingΩ− λ(Vl−Χ) as
∫ ̇f z z x x( , , ) d , where z ̇ = dz/dx, then

π γ

γ θ λ χ

̇ = Δ + ̇ +

+ + − − −

⎡⎣
⎤⎦

f z z x Pzx x z

x D D z D x

( , , ) 2 1

cos ( ) ( )
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2
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(2)
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where κ is the mean curvature of the liquid−vapor interface. The
same equation was obtained by Giacomello et al.13 using a
different variational approach. The derivation of eqs 2 and 3 are
detailed in the Supporting Information.

To solve eq 3, we introduce a new variable, u = −sin ϕ,16,17

where ϕ is the angle made by the vector normal to the liquid−
vapor interface and the symmetry axis of the cavity (Figure 1a).
Equation 3 is written as a differential equation of u, which is
solved either analytically or numerically. For the case of a
rectangular groove, the exact solutions of eq 3 can be derived for
all three types of liquid−vapor interfaces studied by Giacomello
et al.:13 a symmetric pinned interface, a symmetric depinned
interface, and an asymmetric depinned interface (see the
Supporting Information, Figure S1 and eqs S4−S6).
In the present case of a cylindrical cavity, the liquid−vapor

interface takes four different shapes. Initially, the interface is
pinned symmetrically at the top edge of the cavity and then
becomes depinned symmetrically (Figure 1a). The interface
afterward becomes annular upon touching the bottom of the
cavity, and finally remains asymmetric until the cavity is fully
wetted by the liquid (Figure 1b). The symmetric pinned interface
is expressed exactly by

β
β β= + − −

≤ ≤
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where β is the angle between the liquid−vapor and solid−liquid
interfaces (see Figure 1a). β follows Gibbs’ criterion,18 θ− π/2≤
β ≤ θ, depending on the filling level, χ. The symmetric depinned
interface is given by an analytic function,

θ
θ θ= − ′ + − −⎜ ⎟
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2

(5)

whereD′ is the depth of the triple line, which is the contact line of
the liquid−vapor interface with the solid wall of the cavity
(Figure 1a).
A new type of liquid−vapor interface is also discovered: an

annular interface, which is drawn as the solid lines in Figure 1a.
Here, the symmetric depinned interface touches the bottom of
the cavity and flips its downward curvature to an upward one.
The liquid−vapor interface z(x) can be written as

θ θ
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where = θ θ+
−

k W M
M W

cos 2 sin
/ 42 2 , andM is the distance of the triple line

from the bottom corner of the cavity (Figure 1a). F(φ, A) and
E(φ, A) are the incomplete elliptic integrals of first and

s e c o n d k i n d : ∫φ α=
φ

α−
F A( , ) d

A0
1

1 sin2 2
a n d

∫φ α α= −
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E A A( , ) 1 sin d
0

2 2 , w h e r e

=
θ+ +

A
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2
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, φ θ= −π

0 2
, θ φ π θ− ≤ ≤ −π

2
.

The details for derivation of eqs 4−6 are provided in the
Supporting Information.

Figure 1. Various liquid−vapor interfaces in the wetting of a cylindrical
cavity. D andW refer to the depth and width of the cavity, respectively.
(a) Axis-symmetric interfaces of liquid and vapor. Shown is the cross
section of the cavity taken along the XZ plane where the Z axis is the
symmetry axis. The pinned, depinned, and annular interfaces are drawn
as dotted, broken, and solid lines, respectively. β is the angle between the
liquid−vapor and solid−liquid interfaces. φ is the angle between the
vector normal to the liquid−vapor interface and the symmetry axis. D′
represents the depth of the symmetric depinned interface. The annular
interface intersects the bottom and side of the cavity at a distance, M,
from the bottom corner of the cavity. (b) Asymmetric depinned
interface of liquid and vapor. This interface intersects the bottom and
side of the cavity at a distance, L, from the bottom corner of the cavity.
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The asymmetric interface of the liquid and vapor are calculated
numerically. Briefly, a sphere with a radius RS, whose center lies
outside the cavity (which lies in the XZ plane of Figure 1b), is set
up. The surface of the sphere intersects the bottom and side of
the cavity at a distance L from the bottom corner of the cavity.
The overlapping regions of the sphere and cavity are taken to be
in the vapor phase. By inspection of the geometry,13 RS can be

expressed in terms of L and θ as =
θ θ+R L

S sin cos
. L is adjusted so

that the vapor volume and contact angle match the desired values
(1 − χ)Vcavity and θ, respectively.
Using the liquid−vapor interfaces given by eqs 4−6, the

corresponding grand potentials, Ωs, are obtained. The Ω of the
symmetric pinned interface is given by
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In the case of a symmetric depinned interface,
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Equations 7 and 8 are also derived in detail in the Supporting
Information. The Ω of the annular interface is calculated by
evaluating the vapor volume, Vv, and the interfacial areas, Alv and
Asv. Suppose the triple lines are at a distanceM from the bottom
corners of the cavity (Figure 1a). Vv is then given by

∫ π=V zx x2 d
M

W
v

/2
, where z(x) is given by eq 6. This

integral is evaluated numerical ly. A l v is given by

∫ π= ̇ +A x z x2 1 d
M

W
lv

/2 2 , which is calculated by numerical

integration. Asv is simply given by Asv = π(W2/4 −M2) + πWM.
The Ω of the asymmetric depinned interface is calculated
following a similar numerical procedure. For comparison, theΩs
for the liquid−vapor interfaces found in the wetting of a
rectangular groove are also shown in the Supporting Information
(eqs S7−S9).
Throughout this work, the pressure, ΔP, is reported as a

dimensionless pressure, ΔP*, defined as ΔP* = ΔP/ΔPmax,
whereΔPmax =−4γlv cos θ/W.ΔPmax is the pressure above which
the wetting transition experiences no free-energy barrier (the
case where λ = 0 in eq 3). ΔPmax was also derived by Patankar

19

using a different formalism. In a typical experiment,W = 1 μm, α
= D/W = 1, and θ = 110°. Using γlv = 0.0721 N/m, ΔPmax =
0.9735 atm is found for this case. Ω is also reported as a
dimensionless quantity, Ω*, defined as Ω* = Ω/Ωmax, where
Ωmax = ΔPmaxVcavity. For a typical microscale cavity (D = W = 1
μm), Ωmax = ΔPmaxVcavity = 7.75 × 10−14 J = 1.87 × 107 kBT.

■ RESULTS AND DISCUSSION

The free-energy profile of the wetting transition is examined by
varying the pressure asΔP* = 0.01, 0.7, and 1. In Figure 2,Ω* is
plotted by varying the filling level, χ, from−0.2 to 1 (a negative χ
indicates an upward curvature of the pinned interface). The
contact angle, θ, is set to a typical experimental value of 110°.20

The aspect ratio, α = D/W, is fixed to 1.

Regardless of the pressure, Ω* has a local or global minimum
at χ slightly larger than 0 (CB state) and at χ = 1 (WZ state). Note
Ω* is always 0 at χ = 1 by construction. For a negative or near 0
value of χ, the liquid−vapor interface is pinned symmetrically
(drawn as dotted lines in Figure 1a). As χ increases from 0, the
initially pinned interface becomes depinned (broken lines, Figure
1a), and Ω* increases. At a high filling level, χ > 0.8, Ω*
culminates at a transition state, marked with the circle in Figure 2.
This occurs when the symmetric depinned interface touches the
bottom of the cavity and flips its downward curvature to an
upward one. The resulting annular interface (drawn as solid lines
in Figure 1a) is found for the range, χ ∼ 0.85−0.9. With further
wetting of the cavity (χ > 0.9), the annular interface becomes
asymmetric (drawn as dot-dashed lines), until the liquid−vapor
interface disappears and the cavity is fully wetted (χ = 1).
In summary, the wetting transition of a cylindrical cavity

begins with an axis-symmetric pinned interface of the liquid and
vapor and then proceeds with a symmetric depinned interface
and later with an annular interface, finally followed by an
asymmetric depinned interface.21 In contrast, the wetting
transition of a rectangular groove has no analogue of the present
annular interface. Therefore, it consists of three consecutive
steps: a symmetric pinned interface that becomes a symmetric
depinned interface followed by an asymmetric depinned
interface (see Figure S2 in the Supporting Information).
Note that the relative stabilities of the CB (χ∼ 0) andWZ (χ =

1) states depend on the pressure. At the lowest pressure, ΔP* =
0.01, the CB state is stable, and the WZ state is metastable
(Figure 2a). The free-energy barrier, ΩB*, of the wetting (CB-to-
WZ) transition is much larger (by 0.51) than that of the
dewetting (WZ-to-CB) transition. As ΔP* increases to 0.7
(Figure 2b), the dewetting transition has a larger free-energy
barrier (by 0.17) than that of the wetting transition.
Consequently, the CB state becomes metastable, whereas the
WZ state becomes stable. A significant barrier still exists for the

Figure 2. Free-energy profile for the wetting or dewetting transition of a
cylindrical cavity. The dimensionless grand potential,Ω*, is plotted vs χ
for the cavity with θ = 110° and α = 1. The free energies are calculated for
ΔP*s of 0.01 (a), 0.7 (b), and 1 (c). The Ω*s of the symmetric pinned,
symmetric depinned, annular, and asymmetric depinned interfaces are
drawn.
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transition from the metastable CB state to the WZ state. At the
maximum pressure (Figure 2c), ΔP* = 1, the wetting transition
requires no free-energy barrier. Therefore, theWZ state becomes
the only stable state.
The annular interface can be unstable, relative to the

asymmetric interface, for a less hydrophobic cavity. Using a
marginally hydrophobic contact angle, θ = 95°, and a high aspect
ratio, α = 10, the free-energy profiles for three different pressures
is calculated, as shown in Figure 3. The free-energy profiles show

similar tendencies to those found in Figure 2; as ΔP* increases
from 0.01 to 0.8, the CB state becomes metastable, and the WZ
state becomes stable. At the maximum pressure, ΔP* = 1, the
free-energy barrier for the wetting disappears, and the WZ state
becomes the only stable state. Note that the annular interface is
now less stable than the asymmetric interface, regardless of the
pressure. TheΩ*s of the annular interfaces (drawn as solid lines)
are marginally (by 0.047 at most) higher than those of the
asymmetric interfaces (dot-dashed lines). Therefore, the wetting
transition in this case proceeds in three, instead of four, steps: an
initially symmetrically pinned interface becomes depinned
symmetrically and then depinned asymmetrically. This three-
step wetting transition is similar to that found for a rectangular
groove, even though a cylindrical cavity and a rectangular groove
have different symmetries.
Using the free-energy profiles, such as those shown in Figures

2 and 3, the dimensionless free-energy barriers, ΩB*s, are
calculated for the wetting and dewetting transitions, defined as
the differences in the Ω*s of the CB or WZ state and the
transition state, respectively. In Figure 4 (top), ΩB* is plotted by
continuously varying ΔP* from 0 to 1. As expected, ΩB* for the
wetting transition decreases with increasingΔP*, andΩB* for the
dewetting transition increases with increasing ΔP*. At the
intersection of theΩB* lines of the wetting (dot-dashed line) and
dewetting (solid line) transitions (drawn as a circle), the free-
energy barriers for the wetting and dewetting transitions become

identical, meaning that the CB and WZ states are equally stable.
This particular pressure is defined as the coexistence pressure,ΔPC*.
Under the condition drawn in the top of Figure 4 (θ = 110° and α
= 1), ΔPC* = 0.5247 and ΩB* = 0.3916.
Figure 4 (bottom) shows how ΔPC* depends on the aspect

ratio, α, for two different cylindrical cavities with θs of 95° and
110°. Note the WZ state is stable above the coexistence curves
drawn as the solid and broken lines, and the CB state is stable
below the coexistence curves. Irrespective of θ, ΔPC* increases
with increasing α, converging to 1 at very high aspect ratios. This
indicates that with increasing aspect ratios, the CB state can be
stable at a higher pressure. Note also that the ΔPC* becomes 0
below a threshold aspect ratio, αt (2.63 and 0.48 for θ = 95° and
110°, respectively). This means that for α < αt, the CB state
cannot be stable, regardless of the pressure of the liquid drop.
Note also that as the surface becomes more hydrophobic (with θ
increasing from 95° to 110°), the coexistence curve is shifted left
and up, indicating that the CB state can be sustained for a wider
range of pressures and aspect ratios. In other words, the CB state
can be stable for a smaller aspect ratio and a higher pressure. The
ΩB* versus pressure and the coexistence curves shown in Figure 4
are qualitatively similar to those observed for a rectangular
groove (Figure S3 of the Supporting Information).
By considering the various shapes of the liquid−vapor

interface (including a vapor bubble located on the bottom of
cylindrical cavity), we report here the interfaces give a minimal
free energy,Ω, for a given filling level, χ. In principle, it is possible,
although unlikely, that a new type of liquid−vapor interface, not
reported here, is found to be stable.

Figure 3. Free-energy profile for the wetting transition of a cylindrical
cavity with θ = 95° and α = 10.Ω* plotted vs χ forΔP*s of 0.01 (a), 0.8
(b), and 1 (c). The Ω*s of the symmetric pinned, symmetric depinned,
and asymmetric depinned interfaces are drawn. The Ω* of the unstable
annular interface is shown for comparison (magnified as an inset (a)).

Figure 4. (Top) Dimensionless free-energy barrier ΩB* vs the pressure,
ΔP*, for the same θ and α used in Figure 2. The ΩB* for the WZ-to-CB
transition is plotted vs ΔP* as a solid line, and ΩB* for the CB-to-WZ
transition is plotted vs ΔP* as a dot-dashed line. The intersection of
these two lines (drawn as a circle) gives the coexistence pressure, ΔPC*,
where the CB and WZ states have equal grand potentials (equal
stabilities). (Bottom) Coexistence pressure, ΔPC*, vs the aspect ratio, α.
Note that α is plotted in the log scale. The results for θs of 95° and 110°
are drawn as broken and solid lines, respectively. The circle represents
the ΔPC* shown in the top panel.
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■ CONCLUSION

A superhydrophobic surface texturized with nano- or microscale
cavities finds extremely wide applications. The theories on the
wettability of such a surface have focused conventionally on the
cases in which the cavities are wetted completely (WZ state) or
dewetted (CB state) by a liquid. The various intermediate states
that can exist between the CB and WZ states are much less
known. In addition, a liquid drop exists in a thermodynamically
stable and metastable state.11,12 In this vein, a theory capable of
addressing the metastable and transition states in the wetting
transition is highly desirable. This paper presented a theory for
the free-energy change in the continuous wetting of a cylindrical
cavity, which is a common motif of cavities engraved on
hydrophobic surfaces. A cylindrical cavity was wetted in four
steps: Initially, the liquid−vapor interface is axis-symmetric and
pinned at the top of the cavity. The interface then becomes
depinned and slides down along the side wall of the cavity. Upon
touching the bottom of the cavity, the liquid−vapor interface
becomes annular by inverting its downward curvature. The
interface finally becomes asymmetric before coming in contact
with the cavity and disappears, giving the fully wetted WZ state.
The free-energy barrier for the wetting and dewetting transitions
was investigated by systematically varying the aspect ratio of the
cavity and the pressure of the liquid. These findings provide
fundamental design principles for cavities in superhydrophobic
applications.
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