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Extended diffusion theory of reorientation of symmetric top molecules
with internal rotation

Joonkyung Jang® and Kook Joe Shin®
Department of Chemistry and Center for Molecular Catalysis, Seoul National University,
Seoul 151-742, Korea

(Received 17 October 1996; accepted 29 January)1997

The extended diffusioED) theory for the reorientational dynamics of a symmetric top molecule
with internal rotation is reinvestigated. Based on a unified ED picture, we express, by using the
convolution theorem of the Laplace transform, the reorientational correlation time with overall and
internal free rotor correlation functions. In this work, Bull's “equal angular momentum correlation
time assumption” for both overall and internal rotations is removed. Limiting expressions, for
diffusion limit of the overall rotation, are derived and shown to reduce to the results of previous
works. As an application, our numerical calculations are compared with experimentdCon
nuclear-magnetic-resonance dipolar relaxation times of toluene. Angular momentum correlation
times, thus obtained from the comparison, show that our calculations agree with the previous work
of Chung et al. [Chem. Phys. Lett93, 499 (1982]. © 1997 American Institute of Physics.
[S0021-960607)04117-2

I. INTRODUCTION assumption may not be valid generally, e.g., for a small in-
ternal rotor attached to a massive body.

Reorientation of simple molecules with internal rotation In this article we develop a general ED theory for the
in liquid has been investigated by many authors, botlreorientation of a symmetric top molecule with an internal
theoretically > and experimentall§;*? for various mol-  rotor. Using the generic ED picture that both the overall and
ecules like tolueng,® mesitylené®®1*and alkyl chaing? internal rotors undergo “collision interrupted free rotation,”
A variety of theoretical models has been proposed for thave formulate a theory that removes Bull's assumption
internal rotation, typical models of which are; diffusibf, (75=7,). Using the convolution theorem of the Laplace
jump? Fokker—Planck—Langevihand extended diffusion transform technique, we express the reorientational correla-
models*3-1® Among these, the extended diffusigED)  tion time as a contour integral of some function of the overall

theory gives us advantages in that it allows us to consider th@"d internal free rotor correlation functions which are as-

inertial effect of motion, without resorting to the rather com- SUmed to be independent of each other. In the diffusion limit

plicated Fokker—Planck—Langevin approach. In addition, itOf the overall rotation, we de_nve simple expressions WhICh

is well known that, under a series of approximations, expresggguce Ito the resu:_ts of prewm:{vo(;l_(s. lASdE.in iappl:catlon,

sions derived by the ED model reduce to the same form as - "uc€ar-magne ic-resonar ) dipole—dipole relax-
. ) cep - ation times of toluene are calculated and compared with ex-

those obtained by the rotational diffusion theory. Originally eriments. Angular momentum correlation timés and

dgvelope_d by f"rdor_" EE) theory has peen successtully aé')_a), thus obtained, agree with those evaluated in the previous

plied to linear*® sphericalt* and symmetric toly molecules. work of Chunget al?

Conventional theories!’~®which adopt the ED model '

for the internal rotation, usually assume diffusional motion

for the overall reorientation. The theories are basically hy-

brids of models that could not attack the problem with all. THEORY

unified and molecular picture of ED model. Actually, Bull A Reorientational correlation time

has formulated an ED theory for a molecule with an internal

rotor and investigated the dependence of the reorientationgal1e

correlation time on the potential barrier of internal rotation. ) , ,
connects the laboratory coordinate system with the coordi-

His formulation is based on the assumption that “collisions” . . . ) X .
. . ; nate which diagonalizes the interaction of interest. The se-
simultaneously randomize both the overall and internal an- ) . .
. . guence of coordinate transform requires the following sets of
gular momentdin other words, the internal angular momen-

A . Euler angles from the laboratory coordinate system:
tum correlation timer, is equal to the overall angular mo-

mentum correlation time;). One can easily argue that this (1) Q p(t) to the principal body coordinate system fixed to
the molecule at timé;

dpresent address: Department of Chemistry, Brown University, Providence(,z) (% 77’0) .to the ?oordmate SYStem .WhOZEB'XIS IS coinci-

Rl 02912. dent with the internal rotation axis;

Author to whom correspondence should be addressed. (3) [«a(1),B,0] to the internal coordinate system fixed to the

In the study of rotational dynamics, one is interested in
Wigner rotation matr®® at timet, D[Q ()], which
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6814 J. Jang and K. J. Shin: Reorientation with internal rotation

internal rotor and which diagonalizes the interaction of (L)* Q, (0 D(L) Q, (t
(Dl [QF(0) DI Qe(0)])

)

Thus, the rotation matrix of interest is given by

DIQ (1) ]=D[Qp(t)ID[y,7,0]D[(),5,0]. (1)

The reorientational correlation functiomfnLr)n(t), is de- Now if we assume that the overall and internal rotations are
fined ag® mutually independent, Eq2) can be written as

Gt =(2L+1)DY " [ 7, 7,01D{2 [0,8.01D%), [ 7, 7.01D4;1[0,8.01(D{L [2,5(0) 1D,
X[QLD(t)DOveralKexqiba’(o)]exq —ib’ a(t)]>lntemala ©)

where ( )overan @Nd { ) inemar FEPresent ensemble averagesated by the convolution theorem once we evaluate
over overall and internal rotations, respectively. It has beet}Z[Gg;’!(t)] and,%[GL“g,(t)], separately. ED expressions of

aszsoumed that all initial orientations are equally probable, thagach Laplace transform are derived in the following subsec-
is, tion.

(D [QLR(0) DL QLR(0) D ioy= 1AL +1). B. Extended J diffusion model

In Eq. (3) and subsequent equations, the summation over In this subsection, we derive the Laplace transforms of

repeated indice¢Einstein’s conventionis implied unless it overall and internal rotational correlation functions, respec-
is explicitly shown. Further defining the overa[EaO;’!(t) tively. In fact, there are two kinds of ED mod’él:‘extended

and internal G, (1), reorientational correlation functions as J diffusion (EDJ” and “extended M diffusion (EDM)”
bb’ models. In the EDJ model, collision randomizes both the
GO;[(t)z (2L+1)(DY [QLD(O)]D( Q0 Doveras (4)  Magnitude and the direction of the angula_r momentum, while
the EDM model assumes that only the direction is random-
'b"g,(t) (exdiba(0)]exd —ib’ a(t)])intemal (5) ized by collisions. Here, we use the most commonly used
EDJ model, but the general procedure of derivations will be

we get almost the same for EDM model.
G (t)=DL"[,%,0DL"10,8,0]D! /b,[y 7,0] Hereafter, we consider the case where the overall rotor is
approximated as a symmetric top and the internal rotor is
XD [0,8,01G% ()G (1). (6) viewed as a one-dimensional rotor with fixed direction with

respect to the overall rotor. In the EDJ model, the Laplace

The reorientational correlation time , whichis directly  y.2nstorm of the internal correlation function is well known

related to NMR relaxation times, is given by a2l
- | "cb)t. 7 G (s+1Ur,)
Tc fo o0 (1) (7) Lnl;,(s) Soby ' (10)
Equation(7) can be viewed as a Laplace transform of the 1- — GyrR(st1/r,)
reorientational correlation functioB{:)(t), Ta
. WhereG'b“tFR(s+1/T ) is the Laplace transform of the inter-
7e=1lim f efstG&))(t)dt: lim Z[Gl(1)]= G(L)(s= 0), nal free rotor correlation function given by
s—0 0 s—0
1 .
(8) GLntFR(S‘f' f Wipi( ) m da
where s is the Laplace transformed variable and both
Z1G(t)] andG(s) denote Laplace transforms 6f(t). Fi- [\ (s+1/7,)?
nally, from Eqs.(6) and(8), we obtain - ex
=D [7,7,01D5 [0,8.01D).[ 7, 7.0 s+1/7,)2| 12
ab [7.7.0]Dpg" [0,8,01D ;[ v, 7,0] Xerfc(( )) . 1
xD%)0,8,00im Z[G%(HG™, (1)]. (9)
b0 s—0 aa b The Maxwell_—BoItzmann weighting factor for the internal
Thus, 7, can be calculated from the Laplace transform of therOtatlonWi”t(a) IS
product of overall and internal reorientational correlation W (&)= a )1/2 exd — I o ) (12
functions, Z[Gov(t)Gpr, (t)], which, in turn, can be evalu- T 2 kg T 2kgT)’

J. Chem. Phys., Vol. 106, No. 17, 1 May 1997



J. Jang and K. J. Shin: Reorientation with internal rotation 6815

where « is the angular velocity of internal rotokgT the  When the indexb of Eq. (16) equals zero, the internal cor-
Boltzmann factor, andl, the moment of inertia of the inter- relation functlonG'm(t) becomes unity by the definition of
nal rotor.y, of Eq. (11) is defined asy,=2b%kgT/l, and  Eq. (5). Thus, Eq.(16) is divided into two distinct terms:
erfc(x) is the complementary error functiéf.

The Laplace transform of the overall correlation function L
is also given b§* o= 2 L (n]dig(8))7 lim “[GZ(H)Gy(1)]
a,b=— s—0
~ b#0
06— GMR(s+1/my) - )
! aa’ -~ L]
Caa 1-(Ury) GOR(s+ Liry) + 3 [ (nPLd (812 im £[6QN0]. (D)

s—0

where the Laplace transform of the overall free rotor corre-

Ovl
lation function,Ggtg(s+1/7y), is defined &% Now using the convolution theoréthfor the product of

ol two original functions, one can show that the Laplace trans-
GOt 5+ f dJJ d cos 6Woy(J, 6) form of the first term in Eq(17) becomes
y EL) [di2(6)12 lim 2GRt GIN(D)]
L s+ Urn,+i(d,)(c+aé cosh) s-0
(14 [ GQA(u+1/7y)
The weighting factor for the overall rotatioW,,(J,6), is =(2mi) j_im 1—(1/75) GO (u+ 1/ry)
given by® 1)a, FR J
Int
g\ 12 - Gy, I:R( u+1/7,)
Y i) - X du, (18
WOVl(‘J1 0) om ) (kaBT) J 1— (1/Ta) Ibn,tFR( —u+ 1/7.a)
_ 12
><exp< J(1+¢ cos’ 0) , (15) where the integration path is along the vertical line which
21kgT bisects the complex plane. Defining dimensionless variables

whereJ is the magnitude of the overall angular momentumaS
vector and@d is the polar angle of the Euler angl® . The

asymmetry parametef is defined ast=(1,—1,)/1,, where 7o =7c\VKgT/ly, 73 =737VkgT/ly,
I«( = 1,) andl, are the moments of inertia of the symmetric
top. Tr =T \VKgT/l,,  t*=tkgT/ly,
(19
C. Reorientational lation ti J*= ) a*=al ,IkgT
. Reorientational correlation time m’ a '

With expressions for the Laplace transforms of overall
and internal rotational correlation functions given by Egs.  yx—y\| /kgT, w=1,/1
(10) and (13), respectively, we need to know the Laplace

transform of the product of two correlation functiofSq. \ye get the reduced reorientational correlation tirfieas
(9)]. The following describes how one can obtain this by the

convolution theorem of the Laplace transform. L
From Eq.(9), the reorientational correlation time for a = 2 [dé&)(n)]z[dﬁ,%)(ﬁ)]z(ré)a,b- (20)
symmetric top with an internal rotor is given by ab=-L
L
_ 2 2 The components of reorientational correlation timé ) ,
re=_ 2 [ (n) ()] are given by
; o oV Int ~
xl[r:) LG Gpa(D], (16) [ O"'R(u* Iy
(18)abro=p(27) " GOV ;
where we have set=0 in Eq.(9) since, for a symmetric top, —ie 1—(1/73 Ga FR(U™ +1/77)
the choice ok andy coordinates of the principal body frame Gint (—u*+1/r)
is arbitrary. We have also used the following relatiéfs: G, _ a du*, 21)
1—(1/76,[)Gbn (—u*+1/7%)
Gg;lloc aa’ GLnl;,octsbbr FR
D(L)[O 7,0]= d(L) (7). clab=0" 1—(Ur *)GOVlR(l/ *)

J. Chem. Phys., Vol. 106, No. 17, 1 May 1997
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where the complex Laplace transforms of the free rotor corenly on7j which can be seen from E(22). Note that we do

relation functions are defined as

~ 1 ES +1
G u* + — =f dJ*f d cos OWg,(J*, 0)
' T3 0 -1
y i [d32(0)]?
2L U +1/75 +id*(c+aé cosh)’
(23)
- +oo
GL”fFR(—u*+—* = f da* Win(a*)
1
X T
—pu*+1/7 +iba
|\ Y2 (—pu*+1/7%)2
“l2p2) & 2b?
. —,uu*—l—llfz) 24
Xerf| ————|.
\V2b?
The weighting factors are given as
+£\ 12 —J*%(1+¢£ cog 0)
Wo\/l(J*,@):(ﬁ J*? ex > :
(25)
1\ 12 —o*2
e[ L
Win @)= 5 exp( 5 ) (26)

General expressions of reorientational correlation time,
given by Egs.(20)—(22), form the central results of this
work. Note that, in deriving these equations, we have no

made any assumptlon about the angular momentum correl&7e )ab#0=

tion times, 75 and 7% . Bull's assumption, thus, does not
appear in this formulation. Since Eg®1), (23), and (24)

not need to evaluate all the possible components of
(7% )ap. since they have the following symmetry property
(see Appendix

(Tc)ab (Tc) ab— (Tc)af (T:)—a,—b- (27)

The quantity directly related to the experiments, though,
is the weighted sum of+{ ), , given by Eq.(20) rather than
(7%)ap themselves. In Sec. Ill, we calculate HGO) for a
specific molecule, toluene, and relate it to the dipolar relax-
ation time of'3C NMR experiment, which is much facilitated
by the above symmetry relations.

D. Diffusion limit of the overall rotation (  7%5<1)

In the diffusion limit of overall rotation, the integrand in

Eq. (23) can be expanded as a power seriespto give
+io

(apso= 2 | !
SR 24 )i ur+ AIL(L+1) + a2

Gl — U* +1/7%)
b FR( - a du*, (28)
—(1/Ta)Gb’FR(—U* +1/TZ)
¢ )a0= - (29
(76)a0= ST+ D)+ 2]

where we have used properties of the rotation matnd
neglected terms containing raised to powers greater than
1. Choosing the left-hand half-plane as the contour, we can
evaluate the integral in E¢28) by the residue theorem as

aE:

1

*

Ta

t equab erfqyab)

(30

exp(Yap) erfo Yap)

al
il

cannot be integrated analytically, one needs to resort to nuvhere
merical method to calculate the components of reorienta-

tional correlation time, £%),,. Making substitution,u*
=iy (y is the real dimensionless quanjityand taking only
the real part of integral, we integrated Eg1) numerically.
The numerical integration routine usediisL (version 1.0
subroutine DCADRE, which adopts adaptive Romberg ex-
trapolatlon for integration. The integrand of E@1) con-

tains GOU(U* +1/7%) andG{Mq(—u* +1/7%), which them-

selves cannot be evaluated analytically but require numerical
integrations. We thus need to carry out a triple integration

with respect toy, J* and cosf for the calculation of Eq21)
and a double integration, with respect)o and cost for Eq.
(22). Since the upper limits of the integration with respect to
y andJ* extend to infinities, we cut off the upper limits at
y=10% and J* =35, at which convergence of the integrals

was obtained. The rapid convergence of the integral with

respect taJ* is due to the Gaussian distribution &f [see
Eq. (25)]. For the calculation of Eq24), we used complex
error function routine written by Stegun and Zuckéms
noted from Eq(21), the (75 )a b0 COMponent depends both
on 75 and 7, whereas the %), ,—o component depends

a !

J. Chem. Phys., Vol. 106,

u[L(L+1)+¢a2] s +1/7%
J2h? '

Thus for73 <1, the reorientational correlation time is written
as

Yab™

L

= 2 [dw(n]di(8)
b%0
m/2b% exply;p) erfdYap)
1
1— — m/2b? exply2,)erfayap)

a

L
(L) 2rq(L 2
+ 2 WP (B e Ty

(31

Equation(31) is valid in the rotational diffusion limit of the
overall rotation regardless of the type of motion of the inter-
nal rotation. For a special case where the internal rotation

No. 17, 1 May 1997
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axis is parallel to the molecular symmetry axis=0), Eq. The overall angular momentum correlation timg can
(31) reduces to the same expression as the result of Shine evaluated frorﬁ'?D values of ring carbons via E¢35):
et al,?® provided the following relations hold:
kgT kgT — =
5 T) and D2:i Ty, (32) T?D(rlng) r

Ix

1 2 2ﬁ2
YW o (ring), (36)

D1:
l,
whereD is the rotational diffusion constant about the prin- where
cipal symmetry axis an@, is the rotational diffusion con- 2
stant about an axis perpendicular to the above axis. Actually, 74 (ring)= 22 [dao( 7)1%(75) a0, (37)
=

Eq. (32) is known as McClung’s relatioff, which was ob-

tained for a simple symmetric top without internal rotation. jith (7%) a0 given as a function of% by Eq.(22). Note that
Now we further explore the behavior of reorientational there are three distinct ring Carbo(mtho, meta, paljain

correlation time in diffusion and dilute gas limits of internal toluene. The angle; has the values of 60°, 120°, and 180°

rotation, respectively. Whenj <1 andr}, <1, the integrand for these carbons, respectively. At 27 °C, Lambert and

of Eq. (24) can be expanded as a power series?pf Then,  co-workers reported:T?°=21.7, 20.9, and 14.8 s for ortho,

to the first order inry; , Eq.(28), with Eq.(29), is evaluated meta, and para carbons, respectively. On the other hand, at

to give 28 °C, Hamzeet al® reported:TP?°=25.1, 23.5, and 17.4 s
L for ortho, meta, and para carbons, respectively. Using the
= > [dY(91AdL (812 molecular parameters of tol_ueﬁ(és,llwe first calculated the
=-L reorientational correlation time? (ring) from the data of
1 three ring carbons. Then comparing the numerical calcula-

X FILLF 1)+ £a2]+ 70l (33 Egpré/\llgzoenxgre;]nergents, we get the overall angular momentum

Note that the restriction on the summatidn#0, was re- The internal angular momentum correlation tiafe can

moved. If the internal and overall angular momentum correbe obtained fronT?° value of the methyl carbon by

lation times are the samer;=1,, that is, 7 =73/u), Eq.

(33) reduces to the same equation as Bff's. =3
On the other hand, in the limit where* <1 and 7 (methy) r

7~ >1, the reorientational correlation time is approximated as,

1 2 2ﬁ2
VCYQ T.(methyl, (38

herer.(methyl is the reorientational correlation time given

. . L _— N 12 in terms both ofr} and 7 by Eq.(20). For the calculation

TTER bZ_L [dap (7)1 dp'(B)] (W) of r.(methy), we used the average of thre§ values (
b%0 75=0.049 from Lambert and co-workers and 0.057 from

L 1 Hamzaet al). 75 obtained show that the overall rotation is
+ > [dY (1 dE (812 . diffusional (5 <1).
atL %0 % 73 [L(L+1)+¢a’%] From these values of} , the dipolar relaxation time of

(34)  methyl carbon can be obtained as a functionpfand plot-
ted in Fig. 1. From the results of Lambert and co-workers

where we have used the limiting relations of (TPP=39.7 s for methyl carbonwe could not assign a value

plL(L+)+¢ga?]r* for 7, , since the curve never crossed the experimental value.
Vap= P Actually, the curve approached very close to the experimen-
V2b? tal value (our calculation givesT?P=37.5s atr* =100,
andeazerfc(x)zl for x<1 in Eq. (31).22 which is within 6% error of the experimental vaju®n the
contrary, from theT?® (30.8 § of methyl carbon for Hamza
lIl. APPLICATION TO 3C NMR RELAXATION OF et al. we could assignr’; by interpolation of experimental
TOLUENE value to the curve in Fig. 175 thus obtained £;=0.25

essentially matches the value*(=0.29 of Chunget al*®

~ ™C nuclear magnetic relaxation of the methyl group inang the diffusion constants, calculated using E3p), are
liquid toluene has been studied by many authors. Thgery close to experimental valu&This value ofr* shows
dipole—dipole interaction contribution to the spin-lattice re-inat the internal rotation has some inertial charateat is,
laxation timeT2® of a**C nucleus directly bonded to several the motion is in the intermediate motional regimié we use
protons is given, in the extreme narrowing limit,By this 7 and calculate the ratio of, to ;, we obtain

1 7(2;7/&%12 7,/7;=0.5, which clearly shows .that. the assumption of

mzn —5 o (35 equal angular momentum correlation times for both overall

1 and internal rotations is not valid in the present case.
wheren is the number of protons attached to the relaxing  As one can see from Fig. IED is a very slowly increas-
carbon, is Planck’s constant overm2 and y are the gyro- ing function of7% in the region where?, is greater than 1. If
magnetic ratios. we consider the sensitivity of NMR relaxation experiments

J. Chem. Phys., Vol. 106, No. 17, 1 May 1997



6818 J. Jang and K. J. Shin: Reorientation with internal rotation

50 molecule with an internal rotor. Based on a unified ED pic-
ture, we expressed the reorientational correlation time with
overall and internal free rotor correlation functions. In addi-
tion, Bull's “equal angular momentum correlation time
(r;=r,)" assumptior is removed in our theory. This gen-

---------------------- eralization was possible through the convolution of Laplace
- transform technique. Various limiting expressions, Eg§4),
(33), and(34) are derived and shown to reduce to the results
of previous works.

There are only two phenomenological parameters in this
formulation; overall ¢;) and internal ¢,) angular momen-
tum correlation times. To test our theory, numerical calcula-
tions are compared with'C NMR relaxation experiments of
toluene.r; obtained from the comparison shows that overall
rotation is diffusional. r, obtained from Hamza and
co-workers® data agrees with the previous work of Chung
et al’® It is also pointed out, for toluene, that determining the
exactr, from NMR relaxation experiments is a difficult task
becauseT?® increases rather slowly as a function €f in
the intermediate motional regime and due to the inherent

40

30

T (sec.)

20 ,"' ------ Lambert et. al.
! —— Hamaza et. al.

10

0 2 1 0 1 2 sensitivity problem of NMR relaxation experiments.
1 * Although the overall diffusion approximation is a good
Oglo(Ta) one for toluene, as it turned out, our theory differs from

conventional ones in that it starts from the clear molecular
FIG. 1. Numerical calculation 67" for the methyl carbon of toluene as a view of motion, instead of just using rotational diffusion
function of 7'2 with T§=0049 (from Lambert and co-workers’ datand constants as parameters Therefore' it can be app“ed to mol_
73 =0.057 (from Hamzaet al’s dat3. - : - -
J ecules that show intermediate motional behavior for overall
reorientation as well as internal rotation.

(typically 10% erro), exact determination of> may be in-

herently difficult for the case where the internal rotation is

fast or has some inertial effect. It also reminds us, as\cxNOWLEDGMENTS

SuchansKt noted, of Spiess and co-workelsconclusions

that determination of3C relaxation rates due to the spin- This work was supported by a grant from the S.N.U.
internal rotation interaction provides a much better quantitaDaewoo Research Fund and the Center for Molecular Cataly-
tive means for a study of fast internal rotation than does thgis.

dipolar relaxation. Work on this line is also being carried out

in our group.

IV. CONCLUSION APPENDIX: DERIVATION OF EQ. (27)

In this article we generalized the extended diffusion From the definition of Eq(23), ég"F'R(iy+1/rj) can be
theory to investigate the reorientation of a symmetric toprewritten as

1 - —J*%) ¢
iy+— }f dJ* J*2 exp{ 5 ) > exp(—ictd*)
7y 0 L

~Ovl
Ga,FR c==

1+§ 12 r 4
—) f dt ex;{—t
2 0

+1
xf d cos 6[d)(6)]? ex
-1

) 1
iy+ —
y 75

E*2cos 6
F(—Tﬂat\] £cosb|, (A1)

where we have set* =iy (y=rea) in Eq. (23). We also and changed the order of integration. It is possible to decom-

used the identity pose each rotation matrix into odd and even functions of
1 " cosd
—= | dt —t(p+i >0),
(p+ia) J, deext-tpsian =0 [AL(0)P=[dE (O evert [AL (0 Ploae,  (A2)
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