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Extended diffusion theory of reorientation of symmetric top molecules
with internal rotation

Joonkyung Janga) and Kook Joe Shinb)
Department of Chemistry and Center for Molecular Catalysis, Seoul National University,
Seoul 151-742, Korea

~Received 17 October 1996; accepted 29 January 1997!

The extended diffusion~ED! theory for the reorientational dynamics of a symmetric top molecule
with internal rotation is reinvestigated. Based on a unified ED picture, we express, by using the
convolution theorem of the Laplace transform, the reorientational correlation time with overall and
internal free rotor correlation functions. In this work, Bull’s ‘‘equal angular momentum correlation
time assumption’’ for both overall and internal rotations is removed. Limiting expressions, for
diffusion limit of the overall rotation, are derived and shown to reduce to the results of previous
works. As an application, our numerical calculations are compared with experiments on13C
nuclear-magnetic-resonance dipolar relaxation times of toluene. Angular momentum correlation
times, thus obtained from the comparison, show that our calculations agree with the previous work
of Chung et al. @Chem. Phys. Lett.93, 499 ~1982!#. © 1997 American Institute of Physics.
@S0021-9606~97!04117-2#

I. INTRODUCTION

Reorientation of simple molecules with internal rotation
in liquid has been investigated by many authors, both
theoretically1–5 and experimentally,6–12 for various mol-
ecules like toluene,5,7,8 mesitylene,6,9–11 and alkyl chains.12

A variety of theoretical models has been proposed for the
internal rotation, typical models of which are; diffusion,1,2

jump,1,2 Fokker–Planck–Langevin,4 and extended diffusion
models.4,13–19 Among these, the extended diffusion~ED!
theory gives us advantages in that it allows us to consider the
inertial effect of motion, without resorting to the rather com-
plicated Fokker–Planck–Langevin approach. In addition, it
is well known that, under a series of approximations, expres-
sions derived by the ED model reduce to the same form as
those obtained by the rotational diffusion theory. Originally
developed by Gordon, ED theory has been successfully ap-
plied to linear,13 spherical,14 and symmetric top15 molecules.

Conventional theories,5,17–19which adopt the ED model
for the internal rotation, usually assume diffusional motion
for the overall reorientation. The theories are basically hy-
brids of models that could not attack the problem with a
unified and molecular picture of ED model. Actually, Bull3

has formulated an ED theory for a molecule with an internal
rotor and investigated the dependence of the reorientational
correlation time on the potential barrier of internal rotation.
His formulation is based on the assumption that ‘‘collisions’’
simultaneously randomize both the overall and internal an-
gular momenta~in other words, the internal angular momen-
tum correlation timeta is equal to the overall angular mo-
mentum correlation timetJ!. One can easily argue that this

assumption may not be valid generally, e.g., for a small in-
ternal rotor attached to a massive body.

In this article we develop a general ED theory for the
reorientation of a symmetric top molecule with an internal
rotor. Using the generic ED picture that both the overall and
internal rotors undergo ‘‘collision interrupted free rotation,’’
we formulate a theory that removes Bull’s assumption
(tJ5ta). Using the convolution theorem of the Laplace
transform technique, we express the reorientational correla-
tion time as a contour integral of some function of the overall
and internal free rotor correlation functions which are as-
sumed to be independent of each other. In the diffusion limit
of the overall rotation, we derive simple expressions which
reduce to the results of previous works. As an application,
13C nuclear-magnetic-resonance~NMR! dipole–dipole relax-
ation times of toluene are calculated and compared with ex-
periments. Angular momentum correlation times~tJ and
ta!, thus obtained, agree with those evaluated in the previous
work of Chunget al.18

II. THEORY

A. Reorientational correlation time

In the study of rotational dynamics, one is interested in
the Wigner rotation matrix20 at time t, D@VLF(t)#, which
connects the laboratory coordinate system with the coordi-
nate which diagonalizes the interaction of interest. The se-
quence of coordinate transform requires the following sets of
Euler angles from the laboratory coordinate system:

~1! VLD(t) to the principal body coordinate system fixed to
the molecule at timet;

~2! ~g,h,0! to the coordinate system whosez axis is coinci-
dent with the internal rotation axis;

~3! @a(t),b,0# to the internal coordinate system fixed to the

a!Present address: Department of Chemistry, Brown University, Providence,
RI 02912.

b!Author to whom correspondence should be addressed.

6813J. Chem. Phys. 106 (17), 1 May 1997 0021-9606/97/106(17)/6813/7/$10.00 © 1997 American Institute of Physics



internal rotor and which diagonalizes the interaction of
interest.

Thus, the rotation matrix of interest is given by

D@VLF~ t !#5D@VLD~ t !#D@g,h,0#D@a~ t !,b,0#. ~1!

The reorientational correlation function,Gmm
(L) (t), is de-

fined as15

Gmm
~L ! ~ t !5

^Dkm
~L !* @VLF~0!#Dkm

~L !@VLF~ t !#&

^Dkm
~L !* @VLF~0!#Dkm

~L !@VLF~0!#&
. ~2!

Now if we assume that the overall and internal rotations are
mutually independent, Eq.~2! can be written as

Gmm
~L ! ~ t !5~2L11!Dab

~L !* @g,h,0#Dbm
~L !* @0,b,0#Da8b8

~L !
@g,h,0#Db8m

~L !
@0,b,0#^Dka

~L !* @VLD~0!#Dka8
~L !

3@VLD~ t !#&Overall̂ exp@ iba~0!#exp@2 ib8a~ t !#& Internal, ~3!

where ^ &Overall and ^ & Internal represent ensemble averages
over overall and internal rotations, respectively. It has been
assumed that all initial orientations are equally probable, that
is,20

^Dkm
~L !* @VLF~0!#Dkm

~L !@VLF~0!#&VLF~0!51/~2L11!.

In Eq. ~3! and subsequent equations, the summation over
repeated indices~Einstein’s convention! is implied unless it
is explicitly shown. Further defining the overall,Gaa8

Ovl (t),
and internal,Gbb8

Int (t), reorientational correlation functions as

Gaa8
Ovl

~ t !5~2L11!^Dka
~L !* @VLD~0!#Dka8

~L !
@VLD~ t !#&Overall, ~4!

Gbb8
Int

~ t !5^exp@ iba~0!#exp@2 ib8a~ t !#& Internal, ~5!

we get

Gmm
~L ! ~ t !5Dab

~L !* @g,h,0#Dbm
~L !* @0,b,0#Da8b8

~L !
@g,h,0#

3Db8m
~L !

@0,b,0#Gaa8
Ovl

~ t !Gbb8
Int

~ t !. ~6!

The reorientational correlation timetc , which is directly
related to NMR relaxation times, is given by1

tc5E
0

`

G00
~L !~ t !dt. ~7!

Equation~7! can be viewed as a Laplace transform of the
reorientational correlation functionG00

(L)(t),

tc5 lim
s→0

E
0

`

e2stG00
~L !~ t !dt5 lim

s→0
L@G00

~L !~ t !#5Ĝ00
~L !~s50!,

~8!

where s is the Laplace transformed variable and both
L@G(t)# and Ĝ(s) denote Laplace transforms ofG(t). Fi-
nally, from Eqs.~6! and ~8!, we obtain

tc5Dab
~L !* @g,h,0#Db0

~L !* @0,b,0#Da8b8
~L !

@g,h,0#

3Db80
~L !

@0,b,0# lim
s→0

L@Gaa8
Ovl

~ t !Gbb8
Int

~ t !#. ~9!

Thus,tc can be calculated from the Laplace transform of the
product of overall and internal reorientational correlation
functions,L@Gaa8

Ovl (t)Gbb8
Int (t)#, which, in turn, can be evalu-

ated by the convolution theorem once we evaluate
L@Gaa8

Ovl (t)# andL@Gbb8
Int (t)#, separately. ED expressions of

each Laplace transform are derived in the following subsec-
tion.

B. Extended J diffusion model

In this subsection, we derive the Laplace transforms of
overall and internal rotational correlation functions, respec-
tively. In fact, there are two kinds of ED model;13 ‘‘extended
J diffusion ~EDJ!’’ and ‘‘extendedM diffusion ~EDM!’’
models. In the EDJ model, collision randomizes both the
magnitude and the direction of the angular momentum, while
the EDM model assumes that only the direction is random-
ized by collisions. Here, we use the most commonly used
EDJ model, but the general procedure of derivations will be
almost the same for EDM model.

Hereafter, we consider the case where the overall rotor is
approximated as a symmetric top and the internal rotor is
viewed as a one-dimensional rotor with fixed direction with
respect to the overall rotor. In the EDJ model, the Laplace
transform of the internal correlation function is well known
as21

Ĝbb8
Int

~s!5dbb8
Ĝb,FR
Int ~s11/ta!

12
1

ta

Ĝb,FR
Int ~s11/ta!

, ~10!

whereĜb,FR
Int ~s11/ta! is the Laplace transform of the inter-

nal free rotor correlation function given by17

Ĝb,FR
Int S s1

1

ta
D5E

2`

1`

Wint~ ȧ !
1

s11/ta1 ibȧ
dȧ

5S p

yb
D 1/2 expS ~s11/ta!2

yb
D

3erfcS ~s11/ta!2

yb
D 1/2. ~11!

The Maxwell–Boltzmann weighting factor for the internal
rotationWint(ȧ) is

Wint~ ȧ !5S I a

2pkBT
D 1/2 expS 2

I aȧ2

2kBT
D , ~12!
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where ȧ is the angular velocity of internal rotor,kBT the
Boltzmann factor, andI a the moment of inertia of the inter-
nal rotor. yb of Eq. ~11! is defined asyb52b2kBT/I a and
erfc(x) is the complementary error function.22

The Laplace transform of the overall correlation function
is also given by21

Ĝaa8
Ovl

~s!5daa8
Ĝa,FR
Ovl ~s11/tJ!

12~1/tJ!Ĝa,FR
Ovl ~s11/tJ!

, ~13!

where the Laplace transform of the overall free rotor corre-
lation function,Ĝa,FR

Ovl ~s11/tJ!, is defined as15

Ĝa,FR
Ovl S s1

1

tJ
D5E

0

`

dJE
21

11

d cosuWOvl~J,u!

3 (
c52L

L
@dac

~L !~u!#2

s11/tJ1 i ~J/I x!~c1aj cosu!
.

~14!

The weighting factor for the overall rotation,WOvl(J,u), is
given by15

WOvl~J,u!5S 11j

2p D 1/2~ I xkBT!23/2J2

3expS 2J2~11j cos2 u!

2I xkBT
D , ~15!

whereJ is the magnitude of the overall angular momentum
vector andu is the polar angle of the Euler angleVLD . The
asymmetry parameterj is defined asj5~I x2I z!/I z , where
I x( 5 I y) andI z are the moments of inertia of the symmetric
top.

C. Reorientational correlation time

With expressions for the Laplace transforms of overall
and internal rotational correlation functions given by Eqs.
~10! and ~13!, respectively, we need to know the Laplace
transform of the product of two correlation functions@Eq.
~9!#. The following describes how one can obtain this by the
convolution theorem of the Laplace transform.

From Eq.~9!, the reorientational correlation timetc for a
symmetric top with an internal rotor is given by

tc5 (
a,b52L

L

@dab
~L !~h!#2@db0

~L !~b!#2

3 lim
s→0

L@Gaa
Ovl~ t !Gbb

Int~ t !#, ~16!

where we have setg50 in Eq.~9! since, for a symmetric top,
the choice ofx andy coordinates of the principal body frame
is arbitrary. We have also used the following relations:20

Gaa8
Ovl}daa8 , Gbb8

Int }dbb8

and

Dxy
~L !@0,h,0#5dxy

~L !~h!.

When the indexb of Eq. ~16! equals zero, the internal cor-
relation functionGbb

int(t) becomes unity by the definition of
Eq. ~5!. Thus, Eq.~16! is divided into two distinct terms:

tc5 (
a,b52L
bÞ0

L

@dab
~L !~h!#2@db0

~L !~b!#2 lim
s→0

L@Gaa
Ovl~ t !Gbb

Int~ t !#

1 (
a52L

L

@da0
~L !~h!#2@d00

~L !~b!#2 lim
s→0

L@Gaa
Ovl~ t !#. ~17!

Now using the convolution theorem23 for the product of
two original functions, one can show that the Laplace trans-
form of the first term in Eq.~17! becomes

lim
s→0

L@Gaa
Ovl~ t !Gbb

Int~ t !#

5~2p i !21E
2 i`

1 i` Ĝa,FR
Ovl ~u11/tJ!

12~1/tJ!Ĝa,FR
Ovl ~u11/tJ!

3
Ĝb,FR
Int ~2u11/ta!

12~1/ta!Ĝb,FR
Int ~2u11/ta!

du, ~18!

where the integration path is along the vertical line which
bisects the complex plane. Defining dimensionless variables
as

tc*5tcAkBT/I x, tJ*5tJAkBT/I x,

ta*5taAkBT/I a, t*5tAkBT/I x,
~19!

J*5
J

AI xkBT
, ȧ*5ȧAI a /kBT,

u*5uAI x /kBT, m5AI a /I x,

we get the reduced reorientational correlation timetc* as

tc*5 (
a,b52L

L

@dab
~L !~h!#2@db0

~L !~b!#2~tc* !a,b . ~20!

The components of reorientational correlation time (tc* )a,b
are given by

~tc* !a,bÞ05m~2p i !21E
2 i`

1 i` Ĝa,FR
Ovl ~u*11/tJ* !

12~1/tJ* !Ĝa,FR
Ovl ~u*11/tJ* !

3
Ĝb,FR
Int ~2u*11/ta* !

12~1/ta!Ĝb,FR
Int ~2u*11/ta* !

du* , ~21!

~tc* !a,b505
Ĝa,FR
Ovl ~1/tJ* !

12~1/tJ* !Ĝa,FR
Ovl ~1/tJ* !

, ~22!
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where the complex Laplace transforms of the free rotor cor-
relation functions are defined as

Ĝa,FR
Ovl S u*1

1

tJ*
D 5E

0

`

dJ* E
21

11

d cosuWOvl~J* ,u!

3 (
c52L

L
@dac

~L !~u!#2

u*11/tJ*1 iJ* ~c1aj cosu!
,

~23!

Ĝb,FR
Int S 2u*1

1

ta*
D 5E

2`

1`

dȧ*WInt~ ȧ* !

3
1

2mu*11/ta*1 ibȧ*

5S p

2b2D
1/2

expS ~2mu*11/ta* !2

2b2 D
3erfcS 2mu*11/ta*

A2b2 D . ~24!

The weighting factors are given as

WOvl~J* ,u!5S 11j

2p D 1/2J* 2 expS 2J* 2~11j cos2 u!

2 D ,
~25!

WInt~ ȧ* !5S 1

2p D 1/2 expS 2ȧ* 2

2 D . ~26!

General expressions of reorientational correlation time,
given by Eqs.~20!–~22!, form the central results of this
work. Note that, in deriving these equations, we have not
made any assumption about the angular momentum correla-
tion times, tJ* and ta* . Bull’s assumption, thus, does not
appear in this formulation. Since Eqs.~21!, ~23!, and ~24!
cannot be integrated analytically, one needs to resort to nu-
merical method to calculate the components of reorienta-
tional correlation time, (tc* )a,b . Making substitution,u*
5iy ~y is the real dimensionless quantity!, and taking only
the real part of integral, we integrated Eq.~21! numerically.
The numerical integration routine used isIMSL ~version 1.0!
subroutineDCADRE, which adopts adaptive Romberg ex-
trapolation for integration. The integrand of Eq.~21! con-
tainsĜa,FR

Ovl ~u*11/tJ* ! andĜb,FR
Int ~2u*11/ta* !, which them-

selves cannot be evaluated analytically but require numerical
integrations. We thus need to carry out a triple integration
with respect toy, J* and cosu for the calculation of Eq.~21!
and a double integration, with respect toJ* and cosu for Eq.
~22!. Since the upper limits of the integration with respect to
y andJ* extend to infinities, we cut off the upper limits at
y5106 and J*535, at which convergence of the integrals
was obtained. The rapid convergence of the integral with
respect toJ* is due to the Gaussian distribution ofJ* @see
Eq. ~25!#. For the calculation of Eq.~24!, we used complex
error function routine written by Stegun and Zucker.24 As
noted from Eq.~21!, the (tc* )a,bÞ0 component depends both
on tJ* and ta* , whereas the (tc* )a,b50 component depends

only ontJ* which can be seen from Eq.~22!. Note that we do
not need to evaluate all the possible components of
(tc* )a,b , since they have the following symmetry property
~see Appendix!:

~tc* !a,b5~tc* !2a,b5~tc* !a,2b5~tc* !2a,2b . ~27!

The quantity directly related to the experiments, though,
is the weighted sum of (tc* )a,b given by Eq.~20! rather than
(tc* )a,b themselves. In Sec. III, we calculate Eq.~20! for a
specific molecule, toluene, and relate it to the dipolar relax-
ation time of13C NMR experiment, which is much facilitated
by the above symmetry relations.

D. Diffusion limit of the overall rotation ( tJ*<1)

In the diffusion limit of overall rotation, the integrand in
Eq. ~23! can be expanded as a power series oftJ* to give

~tc* !a,bÞ0>
m

2p i
E

2 i`

1 i` 1

u*1tJ* @L~L11!1ja2#

3
Ĝb,FR
Int ~2u*11/ta* !

12~1/ta* !Ĝb,FR
Int ~2u*11/ta* !

du* , ~28!

~tc* !a,0>
1

tJ* @L~L11!1ja2#
, ~29!

where we have used properties of the rotation matrix25 and
neglected terms containingtJ* raised to powers greater than
1. Choosing the left-hand half-plane as the contour, we can
evaluate the integral in Eq.~28! by the residue theorem as

~tc* !a,bÞ0>
mS p

2b2D
1/2

exp~yab
2 !erfc~yab!

12
1

ta*
S p

2b2D
1/2

exp~yab
2 !erfc~yab!

, ~30!

where

yab5
m@L~L11!1ja2#tJ*11/ta*

A2b2
.

Thus fortJ*!1, the reorientational correlation time is written
as

tc*> (
a,b52L
bÞ0

L

@dab
~L !~h!#2@db0

~L !~b!#2

3
mAp/2b2 exp~yab

2 !erfc~yab!

12
1

ta*
Ap/2b2 exp~yab

2 !erfc~yab!

1 (
a52L

L

@da0
~L !~h!#2@d00

~L !~b!#2
1

tJ* @L~L11!1ja2#
.

~31!

Equation~31! is valid in the rotational diffusion limit of the
overall rotation regardless of the type of motion of the inter-
nal rotation. For a special case where the internal rotation
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axis is parallel to the molecular symmetry axis~h50!, Eq.
~31! reduces to the same expression as the result of Shin
et al.,26 provided the following relations hold:

D15
kBT

I z
tJ and D25

kBT

I x
tJ , ~32!

whereD1 is the rotational diffusion constant about the prin-
cipal symmetry axis andD2 is the rotational diffusion con-
stant about an axis perpendicular to the above axis. Actually,
Eq. ~32! is known as McClung’s relation,27 which was ob-
tained for a simple symmetric top without internal rotation.

Now we further explore the behavior of reorientational
correlation time in diffusion and dilute gas limits of internal
rotation, respectively. WhentJ*!1 andta*!1, the integrand
of Eq. ~24! can be expanded as a power series ofta* . Then,
to the first order inta* , Eq. ~28!, with Eq. ~29!, is evaluated
to give

tc*> (
a,b52L

L

@dab
~L !~h!#2@db0

~L !~b!#2

3
1

tJ* @L~L11!1ja2#1ta* b
2/m

. ~33!

Note that the restriction on the summation,bÞ0, was re-
moved. If the internal and overall angular momentum corre-
lation times are the same~tJ5ta , that is,ta*5tJ* /m!, Eq.
~33! reduces to the same equation as Bull’s.28

On the other hand, in the limit wheretJ*!1 and
ta*@1, the reorientational correlation time is approximated as

tc*>m (
a,b52L
bÞ0

L

@dab
~L !~h!#2@db0

~L !~b!#2S p

2b2D
1/2

1 (
a52L

L

@da0
~L !~h!#2@d00

~L !~b!#2
1

tJ* @L~L11!1ja2#
,

~34!

where we have used the limiting relations of

yab>
m@L~L1 !1ja2#tJ*

A2b2

andea
2
erfc(x)>1 for x!1 in Eq. ~31!.22

III. APPLICATION TO 13C NMR RELAXATION OF
TOLUENE

13C nuclear magnetic relaxation of the methyl group in
liquid toluene has been studied by many authors. The
dipole–dipole interaction contribution to the spin-lattice re-
laxation timeT1

DD of a 13C nucleus directly bonded to several
protons is given, in the extreme narrowing limit, by29

1

T1
DD5n

gC
2gH

2 \2

r 6
tc , ~35!

wheren is the number of protons attached to the relaxing
carbon,\ is Planck’s constant over 2p, andg are the gyro-
magnetic ratios.

The overall angular momentum correlation timetJ* can
be evaluated fromT1

DD values of ring carbons via Eq.~35!:

1

T1
DD~ring!

5
gC
2gH

2 \2

r 6
tc~ring!, ~36!

where

tc* ~ring!5 (
a522

2

@da0~h!#2~tc* !a0 , ~37!

with (tc* )a0 given as a function oftJ* by Eq. ~22!. Note that
there are three distinct ring carbons~ortho, meta, para! in
toluene. The angleh has the values of 60°, 120°, and 180°
for these carbons, respectively. At 27 °C, Lambert and
co-workers7 reported:T1

DD521.7, 20.9, and 14.8 s for ortho,
meta, and para carbons, respectively. On the other hand, at
28 °C, Hamzaet al.8 reported:T1

DD525.1, 23.5, and 17.4 s
for ortho, meta, and para carbons, respectively. Using the
molecular parameters of toluene,30,31 we first calculated the
reorientational correlation timetc* ~ring! from the data of
three ring carbons. Then comparing the numerical calcula-
tion with experiments, we get the overall angular momentum
correlation times.

The internal angular momentum correlation timeta* can
be obtained fromT1

DD value of the methyl carbon by

1

T1
DD~methyl!

53
gC
2gH

2 \2

r 6
tc~methyl!, ~38!

wheretc~methyl! is the reorientational correlation time given
in terms both oftJ* andta* by Eq. ~20!. For the calculation
of tc~methyl!, we used the average of threetJ* values ~
tJ*50.049 from Lambert and co-workers and 0.057 from
Hamzaet al.!. tJ* obtained show that the overall rotation is
diffusional ~tJ*!1!.

From these values oftJ* , the dipolar relaxation time of
methyl carbon can be obtained as a function ofta* and plot-
ted in Fig. 1. From the results of Lambert and co-workers
~T1

DD539.7 s for methyl carbon!, we could not assign a value
for ta* , since the curve never crossed the experimental value.
Actually, the curve approached very close to the experimen-
tal value ~our calculation givesT1

DD537.5 s at ta*5100,
which is within 6% error of the experimental value!. On the
contrary, from theT1

DD ~30.8 s! of methyl carbon for Hamza
et al. we could assignta* by interpolation of experimental
value to the curve in Fig. 1.ta* thus obtained (ta*50.25!
essentially matches the value (ta*50.29! of Chunget al.18

and the diffusion constants, calculated using Eq.~32!, are
very close to experimental values.32 This value ofta* shows
that the internal rotation has some inertial character~that is,
the motion is in the intermediate motional regime!. If we use
this ta* and calculate the ratio ofta to tJ , we obtain
ta /tJ50.5, which clearly shows that the assumption of
equal angular momentum correlation times for both overall
and internal rotations is not valid in the present case.

As one can see from Fig. 1,T1
DD is a very slowly increas-

ing function ofta* in the region whereta* is greater than 1. If
we consider the sensitivity of NMR relaxation experiments
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~typically 10% error!, exact determination ofta* may be in-
herently difficult for the case where the internal rotation is
fast or has some inertial effect. It also reminds us, as
Suchanski11 noted, of Spiess and co-workers’16 conclusions
that determination of13C relaxation rates due to the spin-
internal rotation interaction provides a much better quantita-
tive means for a study of fast internal rotation than does the
dipolar relaxation. Work on this line is also being carried out
in our group.

IV. CONCLUSION

In this article we generalized the extended diffusion
theory to investigate the reorientation of a symmetric top

molecule with an internal rotor. Based on a unified ED pic-
ture, we expressed the reorientational correlation time with
overall and internal free rotor correlation functions. In addi-
tion, Bull’s ‘‘equal angular momentum correlation time
(tJ5ta)’’ assumption

3 is removed in our theory. This gen-
eralization was possible through the convolution of Laplace
transform technique. Various limiting expressions, Eqs.~31!,
~33!, and~34! are derived and shown to reduce to the results
of previous works.

There are only two phenomenological parameters in this
formulation; overall (tJ) and internal (ta) angular momen-
tum correlation times. To test our theory, numerical calcula-
tions are compared with13C NMR relaxation experiments of
toluene.tJ obtained from the comparison shows that overall
rotation is diffusional. ta obtained from Hamza and
co-workers’8 data agrees with the previous work of Chung
et al.18 It is also pointed out, for toluene, that determining the
exactta from NMR relaxation experiments is a difficult task
becauseT1

DD increases rather slowly as a function ofta* in
the intermediate motional regime and due to the inherent
sensitivity problem of NMR relaxation experiments.

Although the overall diffusion approximation is a good
one for toluene, as it turned out, our theory differs from
conventional ones in that it starts from the clear molecular
view of motion, instead of just using rotational diffusion
constants as parameters. Therefore, it can be applied to mol-
ecules that show intermediate motional behavior for overall
reorientation as well as internal rotation.
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APPENDIX: DERIVATION OF EQ. (27)

From the definition of Eq.~23!, Ĝa,FR
Ovl ( iy11/tJ* ) can be

rewritten as

Ĝa,FR
Ovl S iy1

1

tJ*
D 5S 11j

2p D 1/2E
0

`

dt expF2tS iy1
1

tJ*
D G E

0

`

dJ* J* 2 expS 2J* 2

2 D (
c52L

L

exp~2 ictJ* !

3E
21

11

d cosu@dac
~L !~u!#2 expS 2

jJ* 2 cos2 u

2
2 iatJ* j cosu D , ~A1!

where we have setu*5iy ~y5real! in Eq. ~23!. We also
used the identity

1

~p1 iq !
5E

0

`

dt exp@2t~p1 iq !# ~p.0!,

and changed the order of integration. It is possible to decom-
pose each rotation matrix into odd and even functions of
cosu

@dac
~L !~u!#25@dac

~L !~u!#2ueven1@dac
~L !~u!#2uodd, ~A2!

FIG. 1. Numerical calculation ofT1
DD for the methyl carbon of toluene as a

function of ta* with tJ*50.049 ~from Lambert and co-workers’ data! and
tJ*50.057~from Hamzaet al.’s data!.

6818 J. Jang and K. J. Shin: Reorientation with internal rotation

J. Chem. Phys., Vol. 106, No. 17, 1 May 1997



and the rotation matrix has the following symmetry property
as

@d2ac
~L ! ~u!#25@dac

~L !~u!#2ueven2@dac
~L !~u!#2uodd. ~A3!

Applying these symmetry properties to Eq.~A1! and noting
that only even functions with respect to cosu survive upon
integration, one can show that

Ĝa,FR
Ovl ~ iy11/tJ* !5Ĝ2a,FR

Ovl ~ iy11/tJ* !. ~A4!

To obtain symmetry properties ofĜb,FR
Int , let us rewrite

the integral in Eq.~24! as

Ĝb,FR
Int S 2 iy1

1

ta*
D 5S 1

2p D 1/2E
0

`

dt expF2S 1ta*
2 imyD tG

3E
2`

1`

dȧ* expS 2ȧ* 2

2 De2 ibȧ* . ~A5!

Note that only the real part of exp~2 ibȧ* ! survives when
the integration with respect toȧ* is performed. Thus, it is
evident that

Ĝb,FR
Int ~2 iy11/ta* !5Ĝ2b,FR

Int ~2 iy11/ta* !. ~A6!

From Eqs.~A4! and ~A6!, it immediately follows that Eq.
~27! is valid.
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